Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
基本信息
- 批准号:MR/S015426/1
- 负责人:
- 金额:$ 141.19万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cellular health is determined by the structure, movement, and interplay of its biomacromolecules. Being able to interrogate the behaviour of biomacromolecules within a native cellular context would enable us to gain an enhanced understanding of how these molecules dictate a cells behaviour and function. Proteins are an essential class of biomacromolecule which perform a wide range of cellular processes such as enzyme catalysis, cell signalling and scaffolding, and DNA replication. They consist of a linear chain of amino acids, defined as a polypeptide, their sequence being determined by the genetic sequence which encodes them. An important subset of proteins is integral membrane proteins which reside within cellular membranes and account for about 30% of cellular proteins. Cellular membranes are dynamic structures consisting mostly of protein and lipid which act to compartmentalise the cell, providing barriers to the external environments of the cell and its organelles. Integral membrane proteins are defined by their content of hydrophobic polypeptide stretches which enable parts of their structure to be embedded within, or associated with, the cellular membrane. They are responsible for a variety of dynamic cellular processes, such as sensation, cellular regulation, and cell-to-cell adhesion. A membrane protein's functional capability and their level of expression will largely decide the ionic composition, and therefore the metabolic levels of a given cell type, making them essential for all life, as well as key drug targets. My main aim is to determine structural dynamic information of membrane proteins directly within their native cellular membrane environment, including within live cells. It is important to understand the structural dynamics of proteins, as their fluctuations frequently represent motions and states that are critical for protein function. To do this I will develop general strategies which enable membrane protein structure and dynamics to be deciphered within complex environments by advanced structural mass spectrometry methods. Structural mass spectrometry uses high-resolution mass information on polypeptides and their peptide building blocks to infer on the structural properties of a protein molecule - their shape, interactions, and movements. Using techniques such as hydrogen/deuterium exchange mass spectrometry (which measures the extent and rate of exchange of protein backbone amide hydrogens for deuterium), both global and local information on protein interactions, ligand binding, and structural dynamics can be delivered. Here, I propose the development of chemical biology and advanced mass spectrometry strategies for membrane protein structural investigation within different native membrane environments.One key area in which integral membrane proteins are important is in the development of antimicrobial resistance. Combating antimicrobial resistance is a key societal challenge which, if not addressed, has the potential to become a global health crisis. In bacterial cell lines, the development of multiple drug resistance to structurally unrelated chemicals have been correlated to the function of multidrug efflux membrane protein transporters, which expel a broad range of toxic substances and result in reduced inhibitory effects of antibiotics. My research will focus on developing the aforementioned methods in the context of multidrug efflux membrane protein systems which are known to play major roles in bacterial antibiotic resistance. This will enable an unprecedented insight into the structure, dynamics, and function of these systems, particularly on the impact of drug and lipid interactions, and clinically relevant mutations. More generally, the ability to achieve structural insight into biomacromolecules within cells would be a huge step forward in our understanding of how they shape the function of healthy and diseased cells.
细胞健康是由其生物大分子的结构、运动和相互作用决定的。能够在原生细胞环境中询问生物大分子的行为将使我们能够更好地理解这些分子如何决定细胞的行为和功能。蛋白质是一类重要的生物大分子,它执行广泛的细胞过程,如酶催化,细胞信号传导和支架,以及DNA复制。它们由线性氨基酸链组成,定义为多肽,它们的序列由编码它们的基因序列决定。蛋白质的一个重要子集是存在于细胞膜内的整体膜蛋白,约占细胞蛋白质的30%。细胞膜是一种动态结构,主要由蛋白质和脂质组成,起分隔细胞的作用,为细胞及其细胞器的外部环境提供屏障。整体膜蛋白是由其疏水多肽延伸的含量来定义的,这使得它们的部分结构能够嵌入细胞膜内或与细胞膜相关联。它们负责各种动态细胞过程,如感觉、细胞调节和细胞间粘附。膜蛋白的功能和表达水平将在很大程度上决定离子组成,从而决定特定细胞类型的代谢水平,使它们成为所有生命和关键药物靶点所必需的。我的主要目的是直接确定膜蛋白在其天然细胞膜环境中的结构动态信息,包括在活细胞中。了解蛋白质的结构动力学是很重要的,因为它们的波动经常代表对蛋白质功能至关重要的运动和状态。为了做到这一点,我将制定总体策略,使膜蛋白结构和动力学能够在复杂的环境中通过先进的结构质谱法破译。结构质谱法使用多肽及其肽构建块的高分辨率质量信息来推断蛋白质分子的结构特性-它们的形状,相互作用和运动。利用氢/氘交换质谱(测量蛋白质主酰胺氢交换氘的程度和速率)等技术,可以传递关于蛋白质相互作用、配体结合和结构动力学的全局和局部信息。在此,我建议发展化学生物学和先进的质谱分析策略,在不同的天然膜环境中研究膜蛋白结构。一个关键领域,其中整体膜蛋白是重要的是在抗菌素耐药性的发展。抗微生物药物耐药性是一项关键的社会挑战,如果不加以解决,就有可能成为一场全球卫生危机。在细菌细胞系中,对结构不相关的化学物质产生多重耐药性与多药外排膜蛋白转运蛋白的功能有关,多药外排膜蛋白转运蛋白可以排出多种有毒物质,从而降低抗生素的抑制作用。我的研究将侧重于在已知在细菌抗生素耐药性中起主要作用的多药物外排膜蛋白系统的背景下开发上述方法。这将使我们能够前所未有地深入了解这些系统的结构、动力学和功能,特别是药物和脂质相互作用的影响,以及临床相关的突变。更一般地说,在细胞内实现生物大分子结构洞察的能力将是我们理解它们如何塑造健康和患病细胞功能的巨大进步。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural dynamics in the evolution of SARS-CoV-2 spike glycoprotein.
- DOI:10.1038/s41467-023-36745-0
- 发表时间:2023-03-14
- 期刊:
- 影响因子:16.6
- 作者:Calvaresi, Valeria;Wrobel, Antoni G.;Toporowska, Joanna;Hammerschmid, Dietmar;Doores, Katie J.;Bradshaw, Richard T.;Parsons, Ricardo B.;Benton, Donald J.;Roustan, Chloe;Reading, Eamonn;Malim, Michael H.;Gamblin, Steve J.;Politis, Argyris
- 通讯作者:Politis, Argyris
Chromatographic Phospholipid Trapping for Automated H/D Exchange Mass Spectrometry of Membrane Protein-Lipid Assemblies.
- DOI:10.1021/acs.analchem.2c04876
- 发表时间:2023-02-07
- 期刊:
- 影响因子:7.4
- 作者:Hammerschmid, Dietmar;Calvaresi, Valeria;Bailey, Chloe;Lewis, Benjamin Russell;Politis, Argyris;Morris, Michael;Denbigh, Laetitia;Anderson, Malcolm;Reading, Eamonn
- 通讯作者:Reading, Eamonn
Perturbed structural dynamics underlie inhibition and altered specificity of the multidrug efflux pump AcrB
结构动力学的扰动是多药外排泵 AcrB 抑制和特异性改变的基础
- DOI:10.1101/2020.04.27.063511
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Reading E
- 通讯作者:Reading E
Assessing Membrane Protein Structural Dynamics within Lipid Nanodiscs.
评估脂质纳米圆盘内的膜蛋白结构动力学。
- DOI:10.1016/j.tibs.2019.08.003
- 发表时间:2019
- 期刊:
- 影响因子:13.8
- 作者:Reading E
- 通讯作者:Reading E
Structural mass spectrometry approaches to understand multidrug efflux systems.
- DOI:10.1042/ebc20220190
- 发表时间:2023-03-29
- 期刊:
- 影响因子:6.4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eamonn Reading其他文献
Mechanistic Insight into the Assembly of the HerA-NurA Helicase-Nuclease DNA End Resection Complex using Native Mass Spectrometry
- DOI:
10.1016/j.bpj.2017.11.2433 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Zainab Ahdash;Andy M. Lau;Robert Thomas Byrne;Katja Lammens;Paula J. Booth;Eamonn Reading;Karl-Peter Hopfner;Argyris Politis - 通讯作者:
Argyris Politis
Interrogating Membrane Protein Conformational Dynamics within Native Lipid Bilayers with Hydrogen-Deuterium Exchange Mass Spectrometry
- DOI:
10.1016/j.bpj.2017.11.454 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Eamonn Reading - 通讯作者:
Eamonn Reading
Mg2+-dependent mechanism of environmental versatility in a multidrug efflux pump
多药外排泵环境多功能性的 Mg2 依赖性机制
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Benjamin Russell Lewis;Muhammad R. Uddin;Katie M. Kuo;Laila M. N. Shah;Nicola J. Harris;Paula J. Booth;Dietmar Hammerschmid;James C. Gumbart;H. Zgurskaya;Eamonn Reading - 通讯作者:
Eamonn Reading
Chromatographic phospholipid trapping for automated H/D 1 exchange mass spectrometry analysis of membrane protein-lipid 2 assemblies
色谱磷脂捕获用于膜蛋白-脂质 2 组装体的自动 H/D 1 交换质谱分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Dietmar Hammerschmid;Valeria Calvaresi;Chloe Bailey;Benjamin Russell Lewis;Argyris Politis;Mike Morris;Laetitia Denbigh;Malcolm Anderson;Eamonn Reading - 通讯作者:
Eamonn Reading
Mgsup2+/sup-dependent mechanism of environmental versatility in a multidrug efflux pump
多药外排泵中镁离子(Mg²⁺)依赖的环境适应性机制
- DOI:
10.1016/j.str.2024.12.012 - 发表时间:
2025-03-06 - 期刊:
- 影响因子:4.300
- 作者:
Benjamin Russell Lewis;Muhammad R. Uddin;Katie M. Kuo;Laila M.N. Shah;Nicola J. Harris;Paula J. Booth;Dietmar Hammerschmid;James C. Gumbart;Helen I. Zgurskaya;Eamonn Reading - 通讯作者:
Eamonn Reading
Eamonn Reading的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eamonn Reading', 18)}}的其他基金
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 141.19万 - 项目类别:
Fellowship
Deciphering the conformational mechanisms of nascent membrane protein folding
破译新生膜蛋白折叠的构象机制
- 批准号:
BB/N011201/1 - 财政年份:2016
- 资助金额:
$ 141.19万 - 项目类别:
Fellowship
相似国自然基金
超精密飞切机床不确定性结构动力学的参数辨识与性能提升研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
介电高弹体动力学特性不确定分析与主动控制方法研究
- 批准号:12002014
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于微观和细观近场动力学模拟的砌体构件性能不确定性分析
- 批准号:51978401
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
考虑混合不确定性因素的卫星结构系统动力学分析方法研究
- 批准号:51875119
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
不确定性结构动力学模型确认方法及其在卫星中的应用研究
- 批准号:11772018
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
结构振动响应的局部化非线性动力学建模和预测
- 批准号:U1730129
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:联合基金项目
重型车铣复合机床结构动力学不确定性及其分析方法研究
- 批准号:51705174
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
考虑不确定性的结构动力学响应模型可信度确认方法研究
- 批准号:51505398
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
控制力矩陀螺的不确定耦合动力学、变结构控制与扰动重复补偿
- 批准号:11402019
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于多尺度动态特性的机械结构不确定性优化设计理论、方法及其应用研究
- 批准号:51275459
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
- 批准号:
EP/X040852/1 - 财政年份:2024
- 资助金额:
$ 141.19万 - 项目类别:
Fellowship
CAREER: Probing structural dynamics and regulatory mechanisms of RNA-guided CRISPR-Cas12 endonucleases and their analogues
职业:探索 RNA 引导的 CRISPR-Cas12 核酸内切酶及其类似物的结构动力学和调控机制
- 批准号:
2339799 - 财政年份:2024
- 资助金额:
$ 141.19万 - 项目类别:
Continuing Grant
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
- 批准号:
24K18450 - 财政年份:2024
- 资助金额:
$ 141.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Structural dynamics and optoelectronics of anharmonic soft semiconductors
职业:非谐波软半导体的结构动力学和光电子学
- 批准号:
2339721 - 财政年份:2024
- 资助金额:
$ 141.19万 - 项目类别:
Continuing Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 141.19万 - 项目类别:
Fellowship
A triptych of structural dynamics in the advancement of global health (in)equity in CAR-T cells and gene therapies
CAR-T 细胞和基因疗法推动全球健康(不)公平的结构动力学三联体
- 批准号:
24K15887 - 财政年份:2024
- 资助金额:
$ 141.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stabilization, growth, and dynamics at the ciliary tip.
睫状体尖端的稳定、生长和动态。
- 批准号:
478242 - 财政年份:2023
- 资助金额:
$ 141.19万 - 项目类别:
Operating Grants
Structural Basis of Cyclic Nucleotide Signal Translation and Inhibition
环核苷酸信号翻译和抑制的结构基础
- 批准号:
483395 - 财政年份:2023
- 资助金额:
$ 141.19万 - 项目类别:
Operating Grants
Computer-aided design and development of isoform selective inhibitors of Casein Kinase 1
酪蛋白激酶 1 异构体选择性抑制剂的计算机辅助设计和开发
- 批准号:
10629703 - 财政年份:2023
- 资助金额:
$ 141.19万 - 项目类别:
Fixed-Target Platforms for Time-Resolved Crystallography
用于时间分辨晶体学的固定目标平台
- 批准号:
10634328 - 财政年份:2023
- 资助金额:
$ 141.19万 - 项目类别: