New advances in insecticide resistance genomics: using Machine Learning to predict resistance phenotype from large-scale genomic data.
杀虫剂抗性基因组学的新进展:利用机器学习从大规模基因组数据中预测抗性表型。
基本信息
- 批准号:MR/T001070/1
- 负责人:
- 金额:$ 65.71万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Malaria is a parasitic tropical disease which kills hundreds of thousands of people every year, predominantly children in Sub-Saharan Africa (SSA). The disease is transmitted by mosquitoes who acquire the parasites after taking a blood meal from an infected person. Elimination of malaria therefore relies on effectively reducing mosquito numbers to break the cycle of transmission. This is primarily achieved through the application of insecticides, either by spraying the walls of houses in which mosquitoes bite or by protecting humans with insecticide-treated bed nets. The documented evolution of resistance to insecticides in mosquitoes that carry malaria is therefore of great concern, and the continued effectiveness of control programmes requires knowledge of the insecticides to which a mosquito population is susceptible. Currently, this is achieved by experimentally exposing mosquitoes to insecticides to directly measure their resistance, but this process is slow and laborious, and not a good indicator of impact. Ideally, it should be possible to screen a mosquito population for key genes involved resistance, but our understanding of the genetics of insecticide resistance is still limited to a handful of genes. The scientific community is currently at the advent of an exciting era in genomics where modern genome sequencing capacity is rapidly increasing the scale at which genomic data can be produced. What have been lacking are analytical techniques that can utilise the huge scale of data and integrate all of the information it contains to predict resistance phenotypes. Machine learning is an approach that allows computers to use existing data to "learn" how to analyse new data and use it to make predictions. For example, given a sufficiently large dataset of mosquitoes whose genetics and resistance characteristics are known, machine learning tools can find associations between genetics and resistance, which can then be used to measure resistance using only genetics. Machine learning tools have yet to be applied to the field of insecticide resistance because they require large amounts of data from which to "learn", and the necessary genomic data have been lacking.We and our collaborators are currently amassing the largest collection of any species to date combining both genome-wide sequencing data and measures of insecticide resistance, producing unprecedented amounts of resistance-associated genomic data. We will leverage these data, using machine learning to improve our ability to estimate the insecticide resistance profile of a mosquito using genomic data. Most importantly, this project will help improve our ability to screen mosquito populations for insecticide resistance and will inform malaria control policy as a result. In collaboration with our partners in SSA who are closely involved with the mosquito control programmes, we will identify areas where our method can be most effectively applied to help improve the control of malaria.
疟疾是一种热带寄生虫病,每年造成数十万人死亡,主要是撒哈拉以南非洲(SSA)的儿童。该疾病是由蚊子传播的,蚊子在吸食感染者的血后获得寄生虫。因此,消除疟疾依赖于有效减少蚊子数量,以打破传播循环。这主要是通过使用杀虫剂来实现的,或者是在蚊子叮咬的房屋墙壁上喷洒杀虫剂,或者是用杀虫剂处理过的蚊帐保护人类。因此,有文件记载的携带疟疾的蚊子对杀虫剂的抗药性的演变令人极为关切,控制方案的持续有效性需要了解蚊子种群易受的杀虫剂。目前,这是通过实验性地将蚊子暴露于杀虫剂以直接测量它们的抗性来实现的,但这个过程缓慢而费力,并且不是一个很好的影响指标。理想情况下,应该有可能筛选蚊子种群中涉及抗性的关键基因,但我们对杀虫剂抗性遗传学的理解仍然限于少数基因。科学界目前正处于一个令人兴奋的基因组学时代的到来,现代基因组测序能力正在迅速增加基因组数据可以产生的规模。一直缺乏的是可以利用大规模数据并整合其包含的所有信息来预测抗性表型的分析技术。机器学习是一种允许计算机使用现有数据来“学习”如何分析新数据并使用它进行预测的方法。例如,给定一个足够大的蚊子数据集,其遗传学和抗性特征是已知的,机器学习工具可以找到遗传学和抗性之间的关联,然后可以使用遗传学来测量抗性。机器学习工具尚未应用于杀虫剂抗性领域,因为它们需要大量的数据来“学习”,而必要的基因组数据一直缺乏。我们和我们的合作者目前正在收集迄今为止最大的物种集合,结合全基因组测序数据和杀虫剂抗性测量,产生前所未有的大量抗性相关基因组数据。我们将利用这些数据,使用机器学习来提高我们使用基因组数据估计蚊子杀虫剂抗性的能力。最重要的是,该项目将有助于提高我们对蚊子种群进行杀虫剂耐药性筛查的能力,并因此为疟疾控制政策提供信息。我们将与撒哈拉以南非洲地区密切参与蚊子控制计划的合作伙伴合作,确定我们的方法可以最有效地应用于帮助改善疟疾控制的领域。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evolution of the Insecticide Target Rdl in African Anopheles Is Driven by Interspecific and Interkaryotypic Introgression.
- DOI:10.1093/molbev/msaa128
- 发表时间:2020-10-01
- 期刊:
- 影响因子:10.7
- 作者:Grau-Bové X;Tomlinson S;O'Reilly AO;Harding NJ;Miles A;Kwiatkowski D;Donnelly MJ;Weetman D;Anopheles gambiae 1000 Genomes Consortium
- 通讯作者:Anopheles gambiae 1000 Genomes Consortium
A method for comparing multiple imputation techniques: A case study on the U.S. national COVID cohort collaborative.
- DOI:10.1016/j.jbi.2023.104295
- 发表时间:2023-03
- 期刊:
- 影响因子:4.5
- 作者:Casiraghi, Elena;Wong, Rachel;Hall, Margaret;Coleman, Ben;Notaro, Marco;Evans, Michael D.;Tronieri, Jena S.;Blau, Hannah;Laraway, Bryan;Callahan, Tiffany J.;Chan, Lauren E.;Bramante, Carolyn T.;Buse, John B.;Moffitt, Richard A.;Sturmer, Til;Johnson, Steven G.;Shao, Yu Raymond;Reese, Justin;Robinson, Peter N.;Paccanaro, Alberto;Valentini, Giorgio;Huling, Jared D.;Wilkins, Kenneth J.
- 通讯作者:Wilkins, Kenneth J.
Genome-wide association studies reveal novel loci associated with pyrethroid and organophosphate resistance in Anopheles gambiae and Anopheles coluzzii.
- DOI:10.1038/s41467-023-40693-0
- 发表时间:2023-08-16
- 期刊:
- 影响因子:16.6
- 作者:Lucas, Eric R.;Nagi, Sanjay C.;Egyir-Yawson, Alexander;Essandoh, John;Dadzie, Samuel;Chabi, Joseph;Djogbenou, Luc S.;Medjigbodo, Adande A.;Edi, Constant V.;Ketoh, Guillaume K.;Koudou, Benjamin G.;Van't Hof, Arjen E.;Rippon, Emily J.;Pipini, Dimitra;Harding, Nicholas J.;Dyer, Naomi A.;Cerdeira, Louise T.;Clarkson, Chris S.;Kwiatkowski, Dominic P.;Miles, Alistair;Donnelly, Martin J.;Weetman, David
- 通讯作者:Weetman, David
Heterogeneous data integration methods for patient similarity networks.
- DOI:10.1093/bib/bbac207
- 发表时间:2022-07-18
- 期刊:
- 影响因子:9.5
- 作者:
- 通讯作者:
LanDis: the disease landscape explorer
- DOI:10.1038/s41431-023-01511-9
- 发表时间:2024-01-10
- 期刊:
- 影响因子:5.2
- 作者:Caniza,Horacio;Caceres,Juan J.;Paccanaro,Alberto
- 通讯作者:Paccanaro,Alberto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin James Donnelly其他文献
S. P. Stock, J. Vandenberg, I. Glazer and N. Boemare, Eds., Insect pathogens. Molecular Approaches and Techniques
- DOI:
10.1007/s10841-009-9243-0 - 发表时间:
2009-09-22 - 期刊:
- 影响因子:1.900
- 作者:
Martin James Donnelly - 通讯作者:
Martin James Donnelly
Does use of domestic insecticides undermine public health control strategies?
使用家用杀虫剂是否会破坏公共卫生控制策略?
- DOI:
10.1016/j.lana.2025.101076 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:7.600
- 作者:
Walter Fabricio Silva Martins;Lee Rafuse Haines;Martin James Donnelly;David Weetman - 通讯作者:
David Weetman
Martin James Donnelly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin James Donnelly', 18)}}的其他基金
Using spatial statistics and genomics to develop epidemiologically relevant definitions of insecticide resistance in African Malaria Vectors
利用空间统计和基因组学制定非洲疟疾媒介中杀虫剂抗药性的流行病学相关定义
- 批准号:
MR/P02520X/1 - 财政年份:2017
- 资助金额:
$ 65.71万 - 项目类别:
Research Grant
Genome-based diagnostics for monitoring and evaluation of insecticide resistance in Anopheles gambiae
基于基因组的诊断用于监测和评估冈比亚按蚊杀虫剂抗药性
- 批准号:
9221234 - 财政年份:2016
- 资助金额:
$ 65.71万 - 项目类别:
Genome-based diagnostics for mapping, monitoring and management of insecticide resistance in major African malaria vectors
基于基因组的诊断,用于绘制、监测和管理非洲主要疟疾病媒的杀虫剂抗药性
- 批准号:
10631175 - 财政年份:2016
- 资助金额:
$ 65.71万 - 项目类别:
Genome-based diagnostics for mapping, monitoring and management of insecticide resistance in major African malaria vectors
基于基因组的诊断,用于绘制、监测和管理非洲主要疟疾病媒的杀虫剂抗药性
- 批准号:
10444139 - 财政年份:2016
- 资助金额:
$ 65.71万 - 项目类别:
Genome-based diagnostics for monitoring and evaluation of insecticide resistance in Anopheles gambiae
基于基因组的诊断用于监测和评估冈比亚按蚊杀虫剂抗药性
- 批准号:
9029400 - 财政年份:2016
- 资助金额:
$ 65.71万 - 项目类别:
Development of a Field Applicable Screening Tool (FAST) kit for detecting resista
开发用于检测耐药性的现场适用筛选工具 (FAST) 套件
- 批准号:
8462498 - 财政年份:2009
- 资助金额:
$ 65.71万 - 项目类别:
Development of a Field Applicable Screening Tool (FAST) kit for detecting resista
开发用于检测耐药性的现场适用筛选工具 (FAST) 套件
- 批准号:
8061987 - 财政年份:2009
- 资助金额:
$ 65.71万 - 项目类别:
Development of a Field Applicable Screening Tool (FAST) kit for detecting resista
开发用于检测耐药性的现场适用筛选工具 (FAST) 套件
- 批准号:
8259687 - 财政年份:2009
- 资助金额:
$ 65.71万 - 项目类别:
Development of a Field Applicable Screening Tool (FAST) kit for detecting resista
开发用于检测耐药性的现场适用筛选工具 (FAST) 套件
- 批准号:
7798130 - 财政年份:2009
- 资助金额:
$ 65.71万 - 项目类别:
Development of a Field Applicable Screening Tool (FAST) kit for detecting resista
开发用于检测耐药性的现场适用筛选工具 (FAST) 套件
- 批准号:
7657009 - 财政年份:2009
- 资助金额:
$ 65.71万 - 项目类别:
相似海外基金
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
- 批准号:
2338621 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Continuing Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
- 批准号:
2348720 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Standard Grant
REU Site: Recent Advances in Natural Language Processing
REU 网站:自然语言处理的最新进展
- 批准号:
2349452 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
- 批准号:
2350128 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Standard Grant
CAREER: Towards Watersheds as Water Treatment Plants through Advances in Distributed Sensing and Control
职业:通过分布式传感和控制的进步将流域打造为水处理厂
- 批准号:
2340176 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Standard Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Continuing Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Continuing Grant