Understanding the cellular neurobiology of paediatric stroke and moyamoya disease

了解小儿中风和烟雾病的细胞神经生物学

基本信息

  • 批准号:
    MR/T005297/1
  • 负责人:
  • 金额:
    $ 24.33万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    未结题

项目摘要

Stroke is often thought of as a disease affecting older adults, but it is a significant condition in children as well - with several hundred affected in the UK annually. Paediatric (children) and neonatal (newborn baby) stroke can lead to significant disabilities including cerebral palsy - a lifelong condition that costs the NHS millions of pounds per year. Although in adults stroke is most often due to atherosclerosis (narrowing of the arteries due to high cholesterol, smoking and other risk factors), in children an underlying condition such as moyamoya disease is often found. In moyamoya, the arteries of the brain narrow, causing a chronic reduction of blood flow to the brain. The presentation, course of, and recovery from stroke are different in children and adults, for reasons we do not yet fully understand.I am a paediatric neurosurgeon who looks after children with moyamoya and stroke. I am part of a multidisciplinary neurovascular team that has the largest caseload of moyamoya and paediatric stroke in the UK. Early in my training, I undertook a PhD project where I used basic neuroscience techniques to examine the response to injury of both neurons (nerve cells) and glial cells (specialized supporting cells) in the brain. I have always been interested in understanding the mechanisms in the brain that are involved in the response to injury and stroke, and hope to use this understanding to improve our treatments for children with these conditions. In this project I wish to link my clinical paediatric neurovascular practice with my basic neuroscience training to elucidate these mechanisms in the world-renowned laboratory of my research partner. The Attwell lab has great expertise in studying neurons, glial cells, and brain blood flow and its disorders, using state of the art techniques including patch-clamping, 2-photon microscopy and a range of transgenic animals allowing cell identification. Capillaries are tiny blood vessels which deliver oxygen and nutrients to brain tissue. My research partner has discovered that these are regulated by surrounding cells called "pericytes" which, in part via glial cells, respond dynamically to changes in blood flow and oxygen levels. I will study the responses of pericytes to ischaemia (when the brain does not get enough blood, e.g. during stroke or in moyamoya) in juvenile rodents of different ages, using 2-photon and confocal microscopy.Axons are the tiny "wires" that send signals between brain cells. During childhood the initially bare axons are progressively wrapped in an insulation called myelin, which is necessary for development of brain function. Employing rodent models of stroke and moyamoya, I will use immunohistochemical labelling, calcium imaging, mathematical conduction modelling and electrophysiology to examine the effect of ischaemia on axons, myelination and the nodes of Ranvier (gaps between myelin) in the developing brain. I will also characterise the stroke-relevant properties of microglia, which are the immune cells of the brain, carrying out surveillance of the microenvironment and responding to injury and cell death, as well as pruning unnecessary synapses. Using brain slices from transgenic rodents I will examine with 2 photon microscopy the responses of microglia to ischaemia in the developing brain and compare them to those of adults.As a neurosurgeon, I have access to brain tissue from operations: small pieces removed to access vascular malformations and tumours, which would otherwise be discarded. This gives me a unique opportunity to replicate rodent experiments on human brain slices and test whether the mechanisms are the same.These experiments will delineate the cellular mechanisms underlying the response of the child's brain to ischaemia, and may lead to the identification of targets for novel drug and surgical therapies to reduce the brain damage caused by, and improve recovery from, paediatric stroke and moyamoya.
中风通常被认为是一种影响老年人的疾病,但它也是儿童的一种重要疾病-英国每年有数百人受到影响。儿科(儿童)和新生儿(新生儿)中风可导致严重残疾,包括脑瘫-一种终身疾病,每年花费NHS数百万英镑。虽然成年人中风最常见的原因是动脉粥样硬化(由于高胆固醇、吸烟和其他危险因素导致动脉狭窄),但在儿童中经常发现一种潜在的疾病,如烟雾病。烟雾病,大脑动脉狭窄,导致流向大脑的血液慢性减少。儿童和成人中风的表现、病程和康复情况有所不同,原因我们还不完全清楚。我是一名儿科神经外科医生,负责照顾患有烟雾病和中风的儿童。我是一个多学科的神经血管团队的一部分,该团队拥有英国最大的烟雾病和儿科中风病例。在我的培训早期,我进行了一个博士项目,在那里我使用基本的神经科学技术来检查大脑中神经元(神经细胞)和神经胶质细胞(专门的支持细胞)对损伤的反应。我一直对理解大脑中参与对损伤和中风的反应的机制感兴趣,并希望利用这种理解来改善我们对患有这些疾病的儿童的治疗。在这个项目中,我希望将我的临床儿科神经血管实践与我的基础神经科学培训联系起来,以阐明我的研究伙伴的世界知名实验室中的这些机制。Attwell实验室在研究神经元,神经胶质细胞和脑血流及其疾病方面具有丰富的专业知识,使用最先进的技术,包括膜片钳,双光子显微镜和一系列允许细胞识别的转基因动物。captured是微小的血管,将氧气和营养物质输送到脑组织。我的研究伙伴发现,这些细胞是由周围称为“周细胞”的细胞调节的,周细胞部分通过神经胶质细胞对血流和氧气水平的变化做出动态反应。我将使用双光子和共聚焦显微镜研究不同年龄的幼年啮齿动物的周细胞对缺血的反应(当大脑没有得到足够的血液时,例如在中风或烟雾病期间)。轴突是脑细胞之间发送信号的微小“电线”。在儿童时期,最初裸露的轴突逐渐被称为髓鞘的绝缘体包裹,这是大脑功能发育所必需的。采用中风和烟雾病的啮齿动物模型,我将使用免疫组织化学标记,钙成像,数学传导建模和电生理学检查缺血对轴突,髓鞘形成和Ranvier节点(髓鞘之间的差距)在发育中的大脑的影响。我还将研究小胶质细胞的中风相关特性,小胶质细胞是大脑的免疫细胞,负责监测微环境,对损伤和细胞死亡做出反应,以及修剪不必要的突触。使用转基因啮齿动物的脑切片,我将用双光子显微镜检查发育中大脑中小胶质细胞对缺血的反应,并将其与成年人的脑切片进行比较。作为一名神经外科医生,我可以从手术中获得脑组织:切除小块以获得血管畸形和肿瘤,否则这些组织将被丢弃。这给了我一个独特的机会,在人脑切片上复制啮齿动物实验,并测试其机制是否相同。这些实验将描绘儿童大脑对缺血反应的细胞机制,并可能导致识别新的药物和手术治疗的靶点,以减少儿科中风和烟雾病引起的脑损伤,并改善其恢复。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3-Dimensional Morphometric Outcomes After Endoscopic Strip Craniectomy for Unicoronal Synostosis.
内窥镜带状颅骨切除术治疗单冠状骨性连接后的 3 维形态测量结果。
Spring-assisted posterior vault expansion-a single-centre experience of 200 cases.
弹簧辅助后库扩展 - 200例单中心经验。
Great Ormond Street Handbook of Paediatric Vascular Anomalies - An Illustrated Guide to Clinical Management
大奥蒙德街小儿血管异常手册 - 临床管理图解指南
  • DOI:
    10.1201/9781003257417-14
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bhate S
  • 通讯作者:
    Bhate S
Monobloc Distraction and Facial Bipartition Distraction with External Devices.
使用外部设备进行整体分散注意力和面部两部分分散注意力。
  • DOI:
    10.1016/j.cps.2021.03.004
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Dunaway DJ
  • 通讯作者:
    Dunaway DJ
Correction of trigonocephaly after endoscopic strip craniectomy with postoperative helmet orthosis therapy: a 3D stereophotogrammetric study.
使用术后头盔矫形器治疗内窥镜带状颅骨切除术后三角头畸形的矫正:3D 立体摄影研究。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory James其他文献

Evaluation of the rapid analyte measurement platform (RAMP) for the detection of <em>Bacillus anthracis</em> at a crime scene
  • DOI:
    10.1016/j.forsciint.2006.09.004
  • 发表时间:
    2007-08-24
  • 期刊:
  • 影响因子:
  • 作者:
    Rebecca Hoile;Marion Yuen;Gregory James;Gwendolyn L. Gilbert
  • 通讯作者:
    Gwendolyn L. Gilbert
A 24-month cost and outcome analysis comparing traditional fronto-orbital advancment and remodeling with endoscopic strip craniectomy and molding helmet in the management of unicoronal craniosynostosis: A retrospective bi-institutional review
一项为期 24 个月的成本和结果分析,比较传统额眶前移和重塑与内窥镜条状颅骨切除术和成型头盔治疗单冠状颅缝早闭的效果:回顾性双机构审查
  • DOI:
    10.1016/j.jpra.2019.01.010
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    B. A. Jivraj;N. Ahmed;K. Karia;Rahul Menon;E. Robertson;A. Sodha;Justin C.R. Wormald;J. O’Hara;O. Jeelani;David Dunaway;Gregory James;J. Ong
  • 通讯作者:
    J. Ong
Colloquial Cantonese: The Complete Course for Beginners
粤语口语:初学者完整教程
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Bourgerie;K. Tong;Gregory James
  • 通讯作者:
    Gregory James
Hospital Readmission Reduction - using a Quality Improvement Model
  • DOI:
    10.1016/j.jamda.2015.01.035
  • 发表时间:
    2015-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Patricia White;Patricia White;Gregory James
  • 通讯作者:
    Gregory James

Gregory James的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory James', 18)}}的其他基金

Financial Development in Southeast Asia: Sources and Effectiveness
东南亚金融发展:来源与有效性
  • 批准号:
    ES/E011004/1
  • 财政年份:
    2007
  • 资助金额:
    $ 24.33万
  • 项目类别:
    Fellowship

相似国自然基金

基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
  • 批准号:
    82371144
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
rhTβ4增强间充质干细胞调节T细胞代谢重塑治疗干眼的机制研究
  • 批准号:
    32000530
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
胰岛素和细菌信号协同调节巨噬细胞免疫反应的作用
  • 批准号:
    92057105
  • 批准年份:
    2020
  • 资助金额:
    89.0 万元
  • 项目类别:
    重大研究计划
聚谷氨酰胺(PolyQ)疾病致病蛋白构象多态性的研究及应用
  • 批准号:
    31970748
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
MAPK11通过RNA结合蛋白ELAVL1调控HTT水平的机制与病理意义研究
  • 批准号:
    31970747
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
细胞代谢重组过程中蛋白质组热稳定性分析
  • 批准号:
    31970706
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Atg4B可逆氧化修饰的作用机制及其对自噬的调节研究
  • 批准号:
    31970699
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
用识别EBV相关淋巴瘤抗原多肽的T细胞受体做转基因免疫治疗
  • 批准号:
    81041002
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
半群代数和半群表示
  • 批准号:
    10961014
  • 批准年份:
    2009
  • 资助金额:
    18.0 万元
  • 项目类别:
    地区科学基金项目
Cellular & Molecular Immunology
  • 批准号:
    30824806
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Understanding the effects of sleep deprivation on the gut's cellular homeostatic process
了解睡眠不足对肠道细胞稳态过程的影响
  • 批准号:
    10679154
  • 财政年份:
    2023
  • 资助金额:
    $ 24.33万
  • 项目类别:
Understanding cellular and molecular legacies of paternal stress
了解父亲压力的细胞和分子遗产
  • 批准号:
    10674637
  • 财政年份:
    2022
  • 资助金额:
    $ 24.33万
  • 项目类别:
Understanding organization of membrane proteins and lipids through lipid vesicle native mass spectrometry
通过脂质囊泡天然质谱了解膜蛋白和脂质的组织
  • 批准号:
    10398213
  • 财政年份:
    2021
  • 资助金额:
    $ 24.33万
  • 项目类别:
Understanding organization of membrane proteins and lipids through lipid vesicle native mass spectrometry
通过脂质囊泡天然质谱了解膜蛋白和脂质的组织
  • 批准号:
    10181389
  • 财政年份:
    2021
  • 资助金额:
    $ 24.33万
  • 项目类别:
Understanding organization of membrane proteins and lipids through lipid vesicle native mass spectrometry
通过脂质囊泡天然质谱了解膜蛋白和脂质的组织
  • 批准号:
    10798675
  • 财政年份:
    2021
  • 资助金额:
    $ 24.33万
  • 项目类别:
Understanding organization of membrane proteins and lipids through lipid vesicle native mass spectrometry
通过脂质囊泡天然质谱了解膜蛋白和脂质的组织
  • 批准号:
    10612847
  • 财政年份:
    2021
  • 资助金额:
    $ 24.33万
  • 项目类别:
Molecular understanding of self immunity in the brain
大脑自我免疫的分子理解
  • 批准号:
    10224356
  • 财政年份:
    2020
  • 资助金额:
    $ 24.33万
  • 项目类别:
Understanding Adolescent In-Vivo Exposure to Alcohol Content in the Media
了解青少年体内接触媒体中酒精含量的情况
  • 批准号:
    10260516
  • 财政年份:
    2020
  • 资助金额:
    $ 24.33万
  • 项目类别:
Understanding Adolescent In-Vivo Exposure to Alcohol Content in the Media
了解青少年体内接触媒体中酒精含量的情况
  • 批准号:
    10661538
  • 财政年份:
    2020
  • 资助金额:
    $ 24.33万
  • 项目类别:
Molecular understanding of self immunity in the brain
大脑自我免疫的分子理解
  • 批准号:
    10039228
  • 财政年份:
    2020
  • 资助金额:
    $ 24.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了