MRI: Acquisition of an HPC System for Data-Driven Discovery in Computational Astrophysics, Biology, Chemistry, and Materials Science
MRI:获取 HPC 系统,用于计算天体物理学、生物学、化学和材料科学中的数据驱动发现
基本信息
- 批准号:1828187
- 负责人:
- 金额:$ 369.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project funds the purchase of a high-performance computing and storage system at the Georgia Institute of Technology. This computing instrument will support data-driven research in astrophysics, biosciences, computational chemistry, materials and manufacturing, and computational science. These projects contribute to national initiatives in big data, strategic computing, materials genome, and manufacturing partnership; and NSF supported observatories such as the gravitational wave observatory and the South Pole neutrino observatory. The system also serves as a springboard for developments of codes, software prototyping, and scalability studies prior to using national supercomputers. Advances made in computational methods and scientific software are disseminated in the form of open-source codes and data analysis portals. Over 33 faculty, 54 research scientists/postdocs, 195 graduate students, and 56 undergraduate students will immediately benefit from the instrument. In addition, the system provides training opportunity at all levels from undergraduate students to early career researchers, in important interdisciplinary areas of national need. A fifth of the system capacity is utilized to enable research activities of regional partners, researchers from minority serving institutions, and other users nationally through XSEDE participation. The project involves undergraduate student participation from historically black colleges from Atlanta metropolitan area. Public outreach efforts are planned through videos of public interest and local events such as the Atlanta Science Festival.The cluster will combine regular compute nodes with others configured to emphasize one of the following: big memory, big local storage, solid state storage, Graphics Processing Units (GPU), and ARM processors. In doing so, the system can be employed by a diversity of projects. In astrophysics, the instrument bolsters data-driven research including detection of gravitational waves, astrophysical neutrinos, and gamma rays. It does it by leveraging data from leading astroparticle observatories and contributing to their mission. It also leads to improved insights into formation of supermassive black holes and large-scale structure of the universe. The computing system also aids the development of parallel software in computational genomics, systems biology, and health analytics. Important applications in assembly and network analysis of plant genomes, and environmental metagenomics are pursued. The instrument also enables next generation algorithms and software for computational chemistry and expands the boundaries of molecular simulation. The system enables advances in density function theory, enhances studies of crystal defects and nanostructures, and injects novel use of machine learning techniques in computational chemistry. It also fosters the development of data science methodologies to identify building blocks of materials at multiple scales, thus significantly reducing the development and deployments cycles for new materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目为格鲁吉亚理工学院购买高性能计算和存储系统提供资金。该计算仪器将支持天体物理学、生物科学、计算化学、材料和制造以及计算科学中的数据驱动研究。这些项目有助于大数据、战略计算、材料基因组和制造伙伴关系方面的国家倡议; NSF支持的观测站,如引力波观测站和南极中微子观测站。该系统也是在使用国家超级计算机之前开发代码、软件原型和可扩展性研究的跳板。在计算方法和科学软件方面取得的进展以开放源代码和数据分析门户的形式传播。超过33名教师,54名研究科学家/博士后,195名研究生和56名本科生将立即受益于该仪器。此外,该系统还在国家需要的重要跨学科领域提供从本科生到早期职业研究人员的各级培训机会。该系统五分之一的能力用于使区域伙伴、少数群体服务机构的研究人员和全国其他用户通过XSEDE的参与开展研究活动。该项目涉及来自亚特兰大大都会地区历史上黑人大学的本科生参与。计划通过公众感兴趣的视频和亚特兰大科学节等当地活动开展公众宣传工作。集群将联合收割机常规计算节点与其他配置的节点结合起来,以强调以下内容之一:大内存、大本地存储、固态存储、图形处理单元(GPU)和ARM处理器。在这样做时,该系统可用于各种项目。在天体物理学中,该仪器支持数据驱动的研究,包括引力波,天体物理中微子和伽马射线的探测。它通过利用来自领先的天体粒子观测站的数据并为其使命做出贡献来做到这一点。它还导致了对超大质量黑洞形成和宇宙大尺度结构的更好理解。该计算系统还有助于在计算基因组学、系统生物学和健康分析中开发并行软件。在植物基因组的组装和网络分析,以及环境宏基因组学的重要应用。该仪器还为计算化学提供了下一代算法和软件,并扩展了分子模拟的边界。该系统使密度函数理论的进步,增强了晶体缺陷和纳米结构的研究,并在计算化学中注入了机器学习技术的新用途。该奖项还促进了数据科学方法的发展,以在多个尺度上识别材料的构建块,从而大大缩短了新材料的开发和部署周期。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(63)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cartesian message passing neural networks for directional properties: Fast and transferable atomic multipoles
- DOI:10.1063/5.0050444
- 发表时间:2021-06-14
- 期刊:
- 影响因子:4.4
- 作者:Glick, Zachary L.;Koutsoukas, Alexios;Sherrill, C. David
- 通讯作者:Sherrill, C. David
Halo Environment for Population III Star Formation
III族恒星形成的光环环境
- DOI:10.3847/2515-5172/ab9e78
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Grace, Justin;O’Shea, Brian W.;Wise, John H.
- 通讯作者:Wise, John H.
Parallel construction of module networks
模块网络的并行构建
- DOI:10.1145/3458817.3476207
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Srivastava, Ankit;Chockalingam, Sriram P.;Aluru, Maneesha;Aluru, Srinivas
- 通讯作者:Aluru, Srinivas
Decoding defect statistics from diffractograms via machine learning
- DOI:10.1038/s41524-021-00539-z
- 发表时间:2021-05-17
- 期刊:
- 影响因子:9.7
- 作者:Kunka, Cody;Shanker, Apaar;Dingreville, Remi
- 通讯作者:Dingreville, Remi
Seeding the second star – II. CEMP star formation enriched from faint supernovae
- DOI:10.1093/mnras/staa2144
- 发表时间:2020-07
- 期刊:
- 影响因子:4.8
- 作者:G. Chiaki;J. Wise;S. Marassi;R. Schneider;M. Limongi;A. Chieffi
- 通讯作者:G. Chiaki;J. Wise;S. Marassi;R. Schneider;M. Limongi;A. Chieffi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivas Aluru其他文献
Reply to: “Re-evaluating the evidence for a universal genetic boundary among microbial species”
回复:“重新评估微生物物种间通用遗传边界的证据”
- DOI:
10.1038/s41467-021-24129-1 - 发表时间:
2021-07-07 - 期刊:
- 影响因子:15.700
- 作者:
Luis M. Rodriguez-R;Chirag Jain;Roth E. Conrad;Srinivas Aluru;Konstantinos T. Konstantinidis - 通讯作者:
Konstantinos T. Konstantinidis
Distribution-Independent Hierarchical Algorithms for the N-body Problem
- DOI:
10.1023/a:1008047806690 - 发表时间:
1998-01-01 - 期刊:
- 影响因子:2.700
- 作者:
Srinivas Aluru;John Gustafson;G.M. Prabhu;Fatih E. Sevilgen - 通讯作者:
Fatih E. Sevilgen
A Parallel Monte Carlo Algorithm for Protein Accessible Surface Area Computation
蛋白质可及表面积计算的并行蒙特卡罗算法
- DOI:
10.1007/978-3-540-46642-0_49 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Srinivas Aluru;D. Ranjan;N. Futamura - 通讯作者:
N. Futamura
Srinivas Aluru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivas Aluru', 18)}}的其他基金
A scalable integrated multi-modal single cell analysis framework for gene regulatory and cell-cell interaction networks
用于基因调控和细胞间相互作用网络的可扩展集成多模式单细胞分析框架
- 批准号:
2233887 - 财政年份:2023
- 资助金额:
$ 369.93万 - 项目类别:
Continuing Grant
BD Hubs: Collaborative Proposal: SOUTH:The South Big Data Innovation Hub
BD Hubs:合作提案:SOUTH:南方大数据创新中心
- 批准号:
1916589 - 财政年份:2019
- 资助金额:
$ 369.93万 - 项目类别:
Cooperative Agreement
AF: Small: Algorithmic Techniques for High-throughput Analysis of Long Reads
AF:小:长读长高通量分析的算法技术
- 批准号:
1816027 - 财政年份:2018
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
EAGER: A Framework for Learning Graph Algorithms with Applications to Social and Gene Networks
EAGER:学习图算法及其在社交和基因网络中的应用的框架
- 批准号:
1841351 - 财政年份:2018
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
Big Data Regional Innovation Hubs and Spokes Workshop
大数据区域创新中心和辐射研讨会
- 批准号:
1736154 - 财政年份:2017
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
SHF:Small: Reproducibility and Comprehensive Assessment of Next Generation Sequencing Bioinformatics Software
SHF:Small:下一代测序生物信息学软件的重现性和综合评估
- 批准号:
1718479 - 财政年份:2017
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
- 批准号:
1704552 - 财政年份:2017
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
BD Hubs: Collaborative Proposal: SOUTH: A Big Data Innovation Hub for the South Region
BD 中心:合作提案:SOUTH:南部地区的大数据创新中心
- 批准号:
1550305 - 财政年份:2015
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
EAGER: Exploratory Research on the Micron Automata Processor
EAGER:微米自动机处理器的探索性研究
- 批准号:
1448333 - 财政年份:2014
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Towards high-performance flexible transcription factor-DNA docking
合作研究:ABI 创新:迈向高性能灵活的转录因子-DNA 对接
- 批准号:
1356065 - 财政年份:2014
- 资助金额:
$ 369.93万 - 项目类别:
Continuing Grant
相似海外基金
Equipment: MRI: Track 2 Acquisition of a HPC Cluster for Fostering Interdisciplinary Collaboration on AI-driven and Data-intensive Research and Education in West Tennessee
设备: MRI:第二轨道收购 HPC 集群,以促进田纳西州西部人工智能驱动和数据密集型研究和教育的跨学科合作
- 批准号:
2318210 - 财政年份:2023
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
MRI: Track 1 Acquisition of an HPC Cluster for Artificial Intelligence, Machine Learning, Scientific Computing, and Interdisciplinary Research
MRI:第一轨道收购用于人工智能、机器学习、科学计算和跨学科研究的 HPC 集群
- 批准号:
2320735 - 财政年份:2023
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
Research Infrastructure: MRI: Acquisition of a Big Data HPC Cluster for Interdisciplinary Research and Training
研究基础设施:MRI:收购大数据 HPC 集群以进行跨学科研究和培训
- 批准号:
2215705 - 财政年份:2022
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
MRI: Acquisition of a high-performance computer (HPC)
MRI:购买高性能计算机 (HPC)
- 批准号:
1919554 - 财政年份:2019
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
MRI: Acquisition of a HPC System: Computing for Sustainability
MRI:购买 HPC 系统:可持续发展计算
- 批准号:
1726447 - 财政年份:2017
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
MRI: Acquisition of a Shared High Performance Computational (HPC) Cluster for Research, Training and Institutional Use
MRI:收购用于研究、培训和机构用途的共享高性能计算 (HPC) 集群
- 批准号:
1626217 - 财政年份:2016
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
MRI: Acquisition of a High Performance Computer to Integrate Data Intensive Research and Education: Bringing HPC to South Jersey
MRI:购买高性能计算机以整合数据密集型研究和教育:将 HPC 引入南泽西
- 批准号:
1429467 - 财政年份:2014
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
MRI: Acquisition of CRAY XC-30 HPC Cluster to Support NCAT Research Computing, Education and Outreach
MRI:收购 CRAY XC-30 HPC 集群以支持 NCAT 研究计算、教育和推广
- 批准号:
1429464 - 财政年份:2014
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
MRI: Acquisition of a HPC System for Data-Driven Discovery in Science and Engineering
MRI:采购 HPC 系统,用于科学与工程中的数据驱动发现
- 批准号:
1229081 - 财政年份:2012
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant
MRI: Acquisition of HPC-B: A High Performance Computational Infrastructure for Biomedical Informatics Research
MRI:收购 HPC-B:用于生物医学信息学研究的高性能计算基础设施
- 批准号:
1229213 - 财政年份:2012
- 资助金额:
$ 369.93万 - 项目类别:
Standard Grant














{{item.name}}会员




