COVID-19 Modelling Consortium: quantitative epidemiological predictions in response to an evolving pandemic

COVID-19 建模联盟:针对不断演变的流行病的定量流行病学预测

基本信息

  • 批准号:
    MR/V038613/1
  • 负责人:
  • 金额:
    $ 392.73万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Since the beginning of the COVID-19 pandemic in early 2020, mathematical and statistical modelling have been used to provide estimates of the epidemic in the UK, and to make short- and long-term predictions about the impact of interventions. The teams of epidemiological modellers and statisticians in our JUNIPER (Joint UNIversity Pandemic Epidemiological Research) consortium represent a core of committed and experienced university research groups that have dedicated themselves since February 2020 to generating predictions, forecasts and insights. These findings feed directly into the Scientific Pandemic Influenza Group on Modelling (SPI-M) and the Scientific Advisory Group for Emergencies (SAGE), both of whom advise the UK government on scientific matters relating to the UK's response to the pandemic. As part of SPI-M this group has brought together a range of analyses to underpin diverse policy decisions including early estimates of the scale of an uncontrolled epidemic, reasonable worst-case scenarios and the impact of reopening schools.Moving forward, critical research gaps remain unaddressed, and further translational work must be conducted to generate the necessary insights. The requested funding will ensure these key groups, with their extensive experience of delivering science for policy and deep understanding of this outbreak, will be able to continue and expand their activities. The Juniper consortium members will continue to respond to rapid requests from the UK government via SPI-M and SAGE, including providing weekly forecasts of the reproductive number R and growth rate in the UK and predictions of the likely impact of policy decisions and interventions. The research teams will be flexible and adaptive to the changing phases of the epidemic, and will proactively consider novel methodology, analysis or modelling that is required, as well as horizon scan the impact of new scientific findings and how this will impact on current and future modelling.The programme of work will address a core set of eight overarching questions that the consortium has identified as being important over the next 12-18 months: 1. How to best address issues around the storage, curation, and processing of the growing number of COVID-related data streams 2. Improving statistical and computational fundamentals for outbreaks 3. Refining methodology for the detection of hotspots or regions in need of greater control 4. Developing bespoke methods to analyse and model Surveillance, Test and Trace 5. Refining methodologies to determine risks posed by structured environments such as workplaces, care homes, hospitals, schools, universities 6. Producing realistic individual-scale modelling of contemporary social interactions 7. Implication of finer-scale individual-level characteristics and impacts of short- and long-term immunity in models. 8. Detailed retrospective analysis of the first wave.Our consortium will embed these scientific activities within an open and collaborative framework, including considerable public outreach so that scientific assumptions and findings are effectively communicated. Our consortium will be outward-facing and inclusive, helping to add value to a range of existing and new COVID-19 activities. We aim to build national capacity and the proposed programme will also contribute to training the next generation of applied epidemiological modellers.
自2020年初COVID-19疫情开始以来,数学及统计模型已被用于提供英国疫情的估计,并对干预措施的影响作出短期及长期预测。我们的JUNIPER(联合大学流行病流行病学研究)联盟中的流行病学建模师和统计学家团队代表了自2020年2月以来致力于生成预测,预测和见解的承诺和经验丰富的大学研究小组的核心。这些发现直接反馈给科学大流行性流感建模小组(SPI-M)和紧急情况科学咨询小组(SAGE),这两个小组就与英国应对大流行有关的科学问题向英国政府提供建议。作为SPI-M的一部分,该小组汇集了一系列分析,以支持各种政策决策,包括对不受控制的流行病规模的早期估计,合理的最坏情况以及重新开放学校的影响。展望未来,关键的研究差距仍然没有解决,必须进行进一步的转化工作,以产生必要的见解。所要求的资金将确保这些关键小组凭借其在为政策提供科学方面的丰富经验和对此次疫情的深入了解,能够继续并扩大其活动。Juniper联盟成员将继续通过SPI-M和SAGE响应英国政府的快速请求,包括每周提供英国生殖数量R和增长率的预测以及政策决策和干预措施可能产生的影响的预测。研究小组将灵活适应疫情的变化阶段,并将积极考虑所需的新方法、分析或建模,以及对新科学发现的影响及其对当前和未来建模的影响进行横向扫描。该工作方案将解决该联盟确定为未来12年重要的八个核心问题,18个月:1.如何最好地解决存储、管理和处理越来越多的COVID相关数据流的问题2.改进疾病暴发的统计和计算基础3.改进用于检测需要更大控制的热点或区域的方法4.开发定制的方法来分析和建模监视,测试和跟踪5。改进方法以确定工作场所、养老院、医院、学校、大学等结构化环境带来的风险。制作当代社会互动的现实个人规模模型7。更精细尺度的个体水平特征的含义以及模型中短期和长期免疫的影响。8.对第一波浪潮进行详细的回顾性分析。我们的联盟将把这些科学活动嵌入到一个开放和协作的框架中,包括大量的公众宣传,以便有效地传达科学假设和发现。我们的联盟将面向外部并具有包容性,有助于为一系列现有和新的COVID-19活动增加价值。我们的目标是建设国家能力,拟议的方案也将有助于培训下一代应用流行病学建模人员。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bivariate collocation for computing R0 in epidemic models with two structures
  • DOI:
    10.1016/j.camwa.2021.10.026
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Breda;Simone De Reggi;F. Scarabel;R. Vermiglio;Jianhong Wu
  • 通讯作者:
    D. Breda;Simone De Reggi;F. Scarabel;R. Vermiglio;Jianhong Wu
Mid 2021 assessment of the Covid-19 pandemic - remaining epidemiological uncertainties. from The SARS-CoV-2 pandemic: remaining uncertainties in our understanding of the epidemiology and transmission dynamics of the virus, and challenges to be overcome
2021 年中期 Covid-19 大流行评估 - 仍存在流行病学不确定性。
  • DOI:
    10.6084/m9.figshare.16665959
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anderson R
  • 通讯作者:
    Anderson R
COVID-19 transmission dynamics underlying epidemic waves in Kenya.
  • DOI:
    10.1126/science.abk0414
  • 发表时间:
    2021-11-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brand SPC;Ojal J;Aziza R;Were V;Okiro EA;Kombe IK;Mburu C;Ogero M;Agweyu A;Warimwe GM;Nyagwange J;Karanja H;Gitonga JN;Mugo D;Uyoga S;Adetifa IMO;Scott JAG;Otieno E;Murunga N;Otiende M;Ochola-Oyier LI;Agoti CN;Githinji G;Kasera K;Amoth P;Mwangangi M;Aman R;Ng'ang'a W;Tsofa B;Bejon P;Keeling MJ;Nokes DJ;Barasa E
  • 通讯作者:
    Barasa E
The role of vaccination and public awareness in medium-term forecasts of monkeypox incidence in the United Kingdom
疫苗接种和公众意识在英国猴痘发病率中期预测中的作用
  • DOI:
    10.1101/2022.08.15.22278788
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brand S
  • 通讯作者:
    Brand S
Early signals of Omicron severity in sentinel UK hospitals
英国哨点医院 Omicron 严重程度的早期信号
  • DOI:
    10.21203/rs.3.rs-1203019/v1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ahmad S
  • 通讯作者:
    Ahmad S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Keeling其他文献

Foot-and-mouth disease under control in the UK
英国口蹄疫得到控制
  • DOI:
    10.1038/35077149
  • 发表时间:
    2001-05-01
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Mark Woolhouse;Margo Chase-Topping;Daniel Haydon;John Friar;Louise Matthews;Gareth Hughes;Darren Shaw;John Wilesmith;Alex Donaldson;Stephen Cornell;Matthew Keeling;Bryan Grenfell
  • 通讯作者:
    Bryan Grenfell

Matthew Keeling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Keeling', 18)}}的其他基金

Cross-scale prediction of Antimicrobial Resistance: from molecules to populations.
抗生素耐药性的跨尺度预测:从分子到群体。
  • 批准号:
    EP/M027503/1
  • 财政年份:
    2016
  • 资助金额:
    $ 392.73万
  • 项目类别:
    Research Grant
Modelling systems for managing bee disease: the epidemiology of European Foul Brood
管理蜜蜂疾病的建模系统:欧洲臭虫的流行病学
  • 批准号:
    BB/I000615/1
  • 财政年份:
    2011
  • 资助金额:
    $ 392.73万
  • 项目类别:
    Research Grant
Implications of clustering (motif-structure) for network-based processes
聚类(基序结构)对基于网络的流程的影响
  • 批准号:
    EP/H016139/1
  • 财政年份:
    2010
  • 资助金额:
    $ 392.73万
  • 项目类别:
    Research Grant
Social contact survey and modelling the spread of influenza
社会接触调查和流感传播建模
  • 批准号:
    G0701256/1
  • 财政年份:
    2008
  • 资助金额:
    $ 392.73万
  • 项目类别:
    Research Grant

相似国自然基金

多鳞白甲鱼高效繁育技术体系研发
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
lncRNA H19通过介导Ras/ULK1信号影响乳腺癌细胞线粒体稳态及糖酵解的作用及机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
老年认知障碍者与主要照护者的沟通现状及影响因素的混合性研究
  • 批准号:
    GDHLYJYQ202410
  • 批准年份:
    2025
  • 资助金额:
    0.3 万元
  • 项目类别:
    省市级项目
肝细胞癌微环境中FGF19激活PPARγ促进Treg免疫抑制功能的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
多元素(19F/23Na/31P/129Xe)磁共振成像前沿研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EBV-miR-BART19-3p抑制GADD45B增强cyclinB1/CDK1结合促进EBV相关胃癌细胞增殖的机制研究
  • 批准号:
    2025JJ81046
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于线粒体自噬途径探讨血管平滑肌细胞衰老的机制及熊氏十味温胆汤的干预作用
  • 批准号:
    2025JJ90023
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
BnaNAC19促进油菜氮素吸收利用的生理分子机制
  • 批准号:
    2025JJ60141
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于生命树叙事疗法的老年晚期癌症患者生命意义感的方案构建及初步应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于循证的老年髋关节置换术后延续护理模式构建 与初步应用研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Modelling the effect of public health interventions on COVID-19 case counts in a closed population through wastewater surveillance: implications in infectious disease outbreak response and epidemiology
通过废水监测模拟公共卫生干预措施对封闭人群中 COVID-19 病例数的影响:对传染病爆发应对和流行病学的影响
  • 批准号:
    486062
  • 财政年份:
    2022
  • 资助金额:
    $ 392.73万
  • 项目类别:
    Studentship Programs
Agent based modelling of COVID-19 in small communities
小社区中基于代理的 COVID-19 建模
  • 批准号:
    571974-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 392.73万
  • 项目类别:
    University Undergraduate Student Research Awards
Spatial modelling of COVID-19 at the small area level using population movement data
使用人口流动数据在小区域层面对 COVID-19 进行空间建模
  • 批准号:
    559264-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 392.73万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
High-resolution multiscale modelling of pandemics: COVID-19 and beyond
流行病的高分辨率多尺度建模:COVID-19 及其他疾病
  • 批准号:
    DP220101688
  • 财政年份:
    2022
  • 资助金额:
    $ 392.73万
  • 项目类别:
    Discovery Projects
Multi-scale modelling of COVID-19 transmission, with application to new and on-going vaccination strategies
COVID-19 传播的多尺度建模,并应用于新的和正在进行的疫苗接种策略
  • 批准号:
    2812293
  • 财政年份:
    2022
  • 资助金额:
    $ 392.73万
  • 项目类别:
    Studentship
COVID-19: Bayesian inference for high resolution stochastic modelling for the UK
COVID-19:英国高分辨率随机建模的贝叶斯推理
  • 批准号:
    EP/W011840/1
  • 财政年份:
    2021
  • 资助金额:
    $ 392.73万
  • 项目类别:
    Research Grant
Real-time modelling and inference of Covid-19 transmission and control
Covid-19传播和控制的实时建模和推理
  • 批准号:
    2578616
  • 财政年份:
    2021
  • 资助金额:
    $ 392.73万
  • 项目类别:
    Studentship
Modelling COVID-19-Related Nursing Workloads using Discrete Event Simulation
使用离散事件模拟对 COVID-19 相关护理工作负载进行建模
  • 批准号:
    565583-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 392.73万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Modelling mask-induced variolation for COVID-19
对面罩引起的 COVID-19 痘痘病毒进行建模
  • 批准号:
    563080-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 392.73万
  • 项目类别:
    University Undergraduate Student Research Awards
COVID-19 Variant Network - Agent-based and multi-scale mathematical modelling of COVID-19 for assessments of sustained transmission risk and effectiveness of countermeasures
COVID-19 变体网络 - 基于代理的 COVID-19 多尺度数学模型,用于评估持续传播风险和对策的有效性
  • 批准号:
    443343
  • 财政年份:
    2021
  • 资助金额:
    $ 392.73万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了