Implications of clustering (motif-structure) for network-based processes

聚类(基序结构)对基于网络的流程的影响

基本信息

  • 批准号:
    EP/H016139/1
  • 负责人:
  • 金额:
    $ 37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Networks are an incredibly powerful way of thinking about (and modelling) the interaction of individuals or particles. Probably the most familiar form of network is the social contacts that we form with friends, family and colleagues. These social networks are typical of the types of network we wish to understand: there are relatively few links (people only have a limited number of contacts compared to the total population), there is variability (some people have many more contacts than others), and the contacts are clustered (my contacts are likely to know each other). It is this final property of clustering that we wish to study in this grant proposal, and will focus on the spread of infectious diseases through clustered networks as our main example.Given the power of modern computers it is quick and easy to simulate the behaviour of any process (eg the spread of infection) on any network, and these simulations have shown that clustering within the network has a strong effect. However, this approach has two disadvantages. The first is that to simulate the behaviour we need to know the precise network, and unfortunately the collection of network data (especially for humans) is difficult and time-consuming - for this reason very few examples of true networks exist. The second problem is that simulation results only tell us about the particular network we are using, we do not know if our results are general or specific to our chosen network. For these reasons we want to used more abstract approaches that allow us to extract general results.One approach to achieve this is the use of pair-wise approximations - which model the number (and type) of interacting pairs, but ignore other elements of network structure. While such pair-wise models have been incredibly useful in understanding the behaviour of processes on a range of complex network types, there are several fundamental flaws when trying to use these approximations for clustered models. This proposal aims to overcome these flaws and therefore predict the general impact of clustering upon network processes. This has great importance for many subject areas where networks are considered important, including computer science, systems biology, genetics, sociology, epidemiology and complexity theory. Our new theoretical developments will be applied primarily to problems of infectious disease spread and control through human social networks. Improvements in this area will directly influence the models that are used to support public-health policies in the UK and elsewhere. However, there are a vast number of other subject areas that will directly benefit from the methods we develop. These include: genetics, computer science, social science and biology. We therefore feel that our work is likely to have far-reaching benefits for scientific researchers, which in turn will benefit the general public.
网络是思考(和模拟)个人或粒子相互作用的一种令人难以置信的强大方式。也许最常见的社交网络形式是我们与朋友、家人和同事形成的社交联系。这些社交网络是我们希望了解的典型网络类型:链接相对较少(与总人口相比,人们的联系人数量有限),存在变异性(一些人的联系人比其他人多得多),并且联系人是集群的(我的联系人可能彼此认识)。这是我们希望在这项拨款建议中研究的集群的最后性质,并将重点放在通过集群网络传播传染病作为我们的主要例子。鉴于现代计算机的能力,它可以快速和容易地模拟任何网络上任何过程的行为(例如感染的传播),这些模拟表明,网络内的集群具有很强的效果。然而,这种方法有两个缺点。首先,为了模拟这种行为,我们需要知道准确的网络,不幸的是,收集网络数据(尤其是对人类来说)是困难和耗时的--因此,真实网络的例子很少。第二个问题是,模拟结果只告诉我们正在使用的特定网络,我们不知道我们的结果是通用的还是特定于所选网络的。出于这些原因,我们希望使用更抽象的方法来提取一般结果。实现这一点的一种方法是使用成对近似-它对相互作用的对的数量(和类型)进行建模,但忽略了网络结构的其他元素。虽然这种成对模型在理解一系列复杂网络类型上的进程行为方面非常有用,但在尝试将这些近似用于集群模型时,存在几个基本缺陷。该建议旨在克服这些缺陷,从而预测集群对网络进程的总体影响。这对于网络被认为很重要的许多学科领域非常重要,包括计算机科学、系统生物学、遗传学、社会学、流行病学和复杂性理论。我们的新理论发展将主要应用于通过人类社会网络传播和控制传染病的问题。这一领域的改进将直接影响英国和其他地方用于支持公共卫生政策的模型。然而,还有大量其他学科领域将直接受益于我们开发的方法。这些学科包括:遗传学、计算机科学、社会科学和生物学。因此,我们觉得我们的工作可能会对科学研究人员产生深远的影响,进而造福于广大公众。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Social encounter networks: characterizing Great Britain.
  • DOI:
    10.1098/rspb.2013.1037
  • 发表时间:
    2013-08-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Danon L;Read JM;House TA;Vernon MC;Keeling MJ
  • 通讯作者:
    Keeling MJ
Exact epidemic dynamics for generally clustered, complex networks
一般集群、复杂网络的精确流行病动态
  • DOI:
    10.48550/arxiv.1006.3483
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    House T
  • 通讯作者:
    House T
Networks and the epidemiology of infectious disease.
GENERALIZED NETWORK CLUSTERING AND ITS DYNAMICAL IMPLICATIONS
广义网络集群及其动态含义
  • DOI:
    10.1142/s0219525910002645
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    HOUSE T
  • 通讯作者:
    HOUSE T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Keeling其他文献

Foot-and-mouth disease under control in the UK
英国口蹄疫得到控制
  • DOI:
    10.1038/35077149
  • 发表时间:
    2001-05-01
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Mark Woolhouse;Margo Chase-Topping;Daniel Haydon;John Friar;Louise Matthews;Gareth Hughes;Darren Shaw;John Wilesmith;Alex Donaldson;Stephen Cornell;Matthew Keeling;Bryan Grenfell
  • 通讯作者:
    Bryan Grenfell

Matthew Keeling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Keeling', 18)}}的其他基金

COVID-19 Modelling Consortium: quantitative epidemiological predictions in response to an evolving pandemic
COVID-19 建模联盟:针对不断演变的流行病的定量流行病学预测
  • 批准号:
    MR/V038613/1
  • 财政年份:
    2020
  • 资助金额:
    $ 37万
  • 项目类别:
    Research Grant
Cross-scale prediction of Antimicrobial Resistance: from molecules to populations.
抗生素耐药性的跨尺度预测:从分子到群体。
  • 批准号:
    EP/M027503/1
  • 财政年份:
    2016
  • 资助金额:
    $ 37万
  • 项目类别:
    Research Grant
Modelling systems for managing bee disease: the epidemiology of European Foul Brood
管理蜜蜂疾病的建模系统:欧洲臭虫的流行病学
  • 批准号:
    BB/I000615/1
  • 财政年份:
    2011
  • 资助金额:
    $ 37万
  • 项目类别:
    Research Grant
Social contact survey and modelling the spread of influenza
社会接触调查和流感传播建模
  • 批准号:
    G0701256/1
  • 财政年份:
    2008
  • 资助金额:
    $ 37万
  • 项目类别:
    Research Grant

相似国自然基金

铝合金中新型耐热合金相的应用基础研究
  • 批准号:
    50801067
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
高维稀疏数据聚类研究
  • 批准号:
    70771007
  • 批准年份:
    2007
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目

相似海外基金

Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
  • 批准号:
    DP240100143
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Discovery Projects
Time series clustering to identify and translate time-varying multipollutant exposures for health studies
时间序列聚类可识别和转化随时间变化的多污染物暴露以进行健康研究
  • 批准号:
    10749341
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
CAREER: A Theoretical Exploration of Efficient and Accurate Clustering Algorithms
职业生涯:高效准确聚类算法的理论探索
  • 批准号:
    2337832
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant
Data-driven phenotyping of central disorders of hypersomnolence with unsupervised clustering: toward more reliable diagnostic criteria
无监督聚类的数据驱动的中枢性嗜睡症表型分析:寻求更可靠的诊断标准
  • 批准号:
    481046
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
  • 批准号:
    2305404
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
  • 批准号:
    2305402
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Clustering of startups and formation of an ecosystem for startups after the withdrawal of major regional companies
区域大企业退出后初创企业的集聚和初创企业生态系统的形成
  • 批准号:
    23K01535
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Did the 2022 strong polar vortex make serial extratropical cyclone clustering more likely? (StratClust)
2022年的强极地涡旋是否使系列温带气旋聚集的可能性更大?
  • 批准号:
    NE/X011933/1
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Research Grant
Understanding the structural mechanism of spontaneous ubiquitin cargo clustering on the cell plasma membrane
了解细胞质膜上自发泛素货物聚集的结构机制
  • 批准号:
    10730734
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
Computational methods for Bayesian clustering
贝叶斯聚类的计算方法
  • 批准号:
    2884420
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了