Forest Formulas for the LHC
大型强子对撞机的森林公式
基本信息
- 批准号:MR/Y003829/1
- 负责人:
- 金额:$ 75.35万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
One of the greatest scientific events of the century is the discovery of the Higgs boson by CERN's Large Hadron Collider (LHC). Yet the LHCs discovery potential has by no means been exhausted as collisions are now happening with an increasing rate at energies never achieved before by mankind. With more and more data being accumulated over the next 15 years we will obtain measurements at unprecedented levels of precision. This data will put stringent new tests on the Standard Model (SM) of particle physics. While the success of the SM is the greatest achievement of particle physics to date, it also poses many mysteries to physicists. For instance, the SM does not explain the observed matter-antimatter asymmetry, or the nature of dark matter and dark energy in the universe. To overcome these problems new models, featuring as exotic ideas as supersymmetry or extra dimensions, have been proposed. So far none of these models could be detected in experiments, but beyond-the-SM (BSM) physics may still be detected at the energy currently explored by the LHC.To distinguish new physics from the SM, theoretical calculations must match the accuracy of the experimental measurements. This poses a tremendous challenge since it is impossible to calculate general observables exactly in quantum field theory. Instead, theoretical physicists resort to what is called the perturbative expansion; this is a systematic way to expand the complicated functions, which describe the scattering rates, in a series in the interaction strength, where each successive term is smaller than the preceding. By calculating enough terms in this expansion one can thus obtain increasingly reliable results. Especially in quantum chromodynamics (QCD), which governs the dynamics of the constituent quarks and gluons of the proton, the convergence of this expansion is relatively slow and in certain cases computations with three or four terms are required. The problem with this approach is that the Feynman diagrams, which appear in the individual terms of this expansion, rapidly increase in both number and complexity. To make matters worse, these Feynman diagrams also contain complicated infrared (IR) and ultraviolet (UV) divergences (singularities) which are of long- and short-distance origin.While the problem of UV divergences has been solved already half a century ago by the procedure of renormalisation, the situation is very different for the IR divergences. Calculating higher-order effects in QCD requires the combination of two separate contributions: real corrections (due to emissions of observable particles) and virtual (loop or quantum) corrections. While it is well known that the divergences of the real emission corrections cancel with those of the virtual corrections, the cancellations only happen after all the different loop and phase-space integrals have been performed.A rigorous approach to renormalisation is given by the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) scheme also known as the "forest formula", where the term forest refers to sets of nested or disjoint divergent subgraphs. The key idea of this project is to develop and use "generalised forest formulas" for the subtraction of IR divergences. While this proposition is far from trivial, recent breakthroughs which I have made in my recent research have already proven the concept, obtaining a plethora of new results which could not have been achieved by other means. The future potential of this approach is great, as it opens the door for new ways of calculating quantities, which are desperately needed to improve the precision of current theory predictions, such as the 4-loop splitting functions, which govern the energy dependence of partons in the proton, and the 2-loop anomalous dimensions which govern the energy dependence of coupling parameters in the SM EFT, a general model-independent framework to BSM physics.
世纪最伟大的科学事件之一是欧洲核子研究中心的大型强子对撞机(LHC)发现了希格斯玻色子。然而,大型强子对撞机的发现潜力绝没有被耗尽,因为碰撞正在以人类以前从未达到的能量以越来越快的速度发生。随着未来15年积累的数据越来越多,我们将获得前所未有的精确度。这些数据将对粒子物理学的标准模型(SM)进行严格的新测试。虽然SM的成功是粒子物理学迄今为止最伟大的成就,但它也给物理学家带来了许多谜团。例如,SM不能解释观测到的物质-反物质不对称性,或者宇宙中暗物质和暗能量的性质。为了克服这些问题,人们提出了新的模型,这些模型的特点是像超对称性或额外维度这样的奇异思想。到目前为止,这些模型都不能在实验中被探测到,但在LHC目前探索的能量下,超越SM(BSM)物理仍然可以被探测到。为了区分新物理和SM,理论计算必须与实验测量的精度相匹配。这是一个巨大的挑战,因为在量子场论中不可能精确计算一般的可观测量。相反,理论物理学家诉诸所谓的微扰展开;这是一种系统的方法来展开复杂的函数,描述散射率,在相互作用强度的一系列中,其中每一个连续的项都小于前一个。通过在这种展开式中计算足够多的项,人们可以获得越来越可靠的结果。特别是在量子色动力学(QCD)中,它控制着质子的夸克和胶子的动力学,这种展开的收敛相对较慢,在某些情况下需要三到四项的计算。这种方法的问题是,费曼图,出现在这种扩展的各个方面,在数量和复杂性上都迅速增加。更糟糕的是,这些费曼图还包含复杂的红外(IR)和紫外(UV)发散(奇点),它们分别来自长距离和短距离。虽然紫外发散的问题已经在半个世纪前通过重正化过程得到解决,但红外发散的情况却大不相同。计算QCD中的高阶效应需要结合两个独立的贡献:真实的修正(由于可观测粒子的发射)和虚拟(环或量子)修正。虽然众所周知,真实的辐射修正的发散与虚修正的发散相抵消,但这种抵消只发生在所有不同的回路积分和相空间积分完成之后。Bogoliubov-Parasiuk-Hepp-Zimmermann(BPHZ)方案也被称为“森林公式”,其中森林指的是嵌套或不相交的发散子图的集合。这个项目的主要思想是开发和使用“广义森林公式”的IR分歧的减法。虽然这个命题远非微不足道,但我在最近的研究中取得的突破已经证明了这一概念,获得了许多其他方法无法实现的新结果。这种方法的未来潜力是巨大的,因为它为计算量的新方法打开了大门,这些方法迫切需要提高当前理论预测的精度,例如控制质子中部分子的能量依赖性的4圈分裂函数,以及控制SM EFT中耦合参数的能量依赖性的2圈异常尺寸,BSM物理学的一个通用模型独立框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Franz Herzog其他文献
Identification of cell cycle-dependent phosphorylation sites on the anaphase-promoting complex/cyclosome by mass spectrometry.
通过质谱法鉴定后期促进复合物/环体上的细胞周期依赖性磷酸化位点。
- DOI:
10.1016/s0076-6879(05)98019-1 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Franz Herzog;K. Mechtler;J. Peters - 通讯作者:
J. Peters
growth Molecular basis of Rrn 3-regulated RNA polymerase I initiation and cell
Rrn 3 调节的 RNA 聚合酶 I 启动和细胞生长的分子基础
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
C. Blattner;Stefan Jennebach;Franz Herzog;A. Mayer;A. Cheung;G. Witte;K. Lorenzen;K. Hopfner;A. Heck;R. Aebersold;P. Cramer - 通讯作者:
P. Cramer
Über die Sehbahn, das Ganglion opticum basale und die Fasersysteme am Boden des dritten Hirnventrikels in einem Falle von Bulbusatrophie beider Augen
- DOI:
10.1007/bf02114796 - 发表时间:
1906-03-01 - 期刊:
- 影响因子:4.600
- 作者:
Franz Herzog - 通讯作者:
Franz Herzog
Über ein Charakteristisches Symptom der Akromegalie
- DOI:
10.1007/bf01715784 - 发表时间:
1925-08-01 - 期刊:
- 影响因子:4.200
- 作者:
Franz Herzog - 通讯作者:
Franz Herzog
Messung der Reaktiven Erwärmung der Haut zur Funktionsprüfung der Arteriolen
- DOI:
10.1007/bf01863226 - 发表时间:
1941-01-01 - 期刊:
- 影响因子:4.200
- 作者:
Franz Herzog - 通讯作者:
Franz Herzog
Franz Herzog的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Franz Herzog', 18)}}的其他基金
相似海外基金
Functoriality for Relative Trace Formulas
相对迹公式的函数性
- 批准号:
2401554 - 财政年份:2024
- 资助金额:
$ 75.35万 - 项目类别:
Continuing Grant
Research on trace formulas for covering groups of reductive algebraic groups
还原代数群覆盖群的迹公式研究
- 批准号:
23K12951 - 财政年份:2023
- 资助金额:
$ 75.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exact Formulas for the KPZ Fixed Point and the Directed Landscape
KPZ 不动点和有向景观的精确公式
- 批准号:
2246683 - 财政年份:2023
- 资助金额:
$ 75.35万 - 项目类别:
Standard Grant
CDS&E: Rigorous formulas for industrial supercritical-fluid mixture properties via systematic evaluation of molecular virial coefficients, and methods to expand their applicati
CDS
- 批准号:
2152946 - 财政年份:2022
- 资助金额:
$ 75.35万 - 项目类别:
Standard Grant
Linear and nonlinear modeling of fundamental theory explaining the prescription system of Kampo (traditional Japanese medicine) formulas based on chemistry and data science
基于化学和数据科学的解释汉方(传统日本医学)处方系统的基础理论的线性和非线性建模
- 批准号:
22K06690 - 财政年份:2022
- 资助金额:
$ 75.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computer Generation of Explicit Formulas for Jacobian Arithmetic on Hyperelliptic Curves
超椭圆曲线雅可比算术显式公式的计算机生成
- 批准号:
574796-2022 - 财政年份:2022
- 资助金额:
$ 75.35万 - 项目类别:
University Undergraduate Student Research Awards
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
- 批准号:
RGPIN-2020-03909 - 财政年份:2022
- 资助金额:
$ 75.35万 - 项目类别:
Discovery Grants Program - Individual
Explicit Formulas for Functorial Transfer Kernels
函数传递核的显式公式
- 批准号:
547477-2020 - 财政年份:2022
- 资助金额:
$ 75.35万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
New developments in the anticyclotomic Iwasawa theory and special value formulas on L-functions
反圆剖分Iwasawa理论和L函数特殊值公式的新进展
- 批准号:
22H00096 - 财政年份:2022
- 资助金额:
$ 75.35万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
- 批准号:
RGPIN-2020-03909 - 财政年份:2021
- 资助金额:
$ 75.35万 - 项目类别:
Discovery Grants Program - Individual