Investigating the Dynamic Response of the Greenland Ice Sheet to Climate Forcing using a Geophysical, Remote-Sensing and Numerical Modelling Framework

使用地球物理、遥感和数值模拟框架研究格陵兰冰盖对气候强迫的动态响应

基本信息

  • 批准号:
    NE/G00692X/1
  • 负责人:
  • 金额:
    $ 11.85万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

An increasing number of scientific studies show that human activities, e.g. burning of fossil fuels, have increased the concentration of heat-trapping gasses in the atmosphere. It is estimated that global temperatures will increase by 2-5 degrees C during this century if we continue to add carbon dioxide and other 'greenhouse' gasses to the atmosphere. In the Arctic, warming is expected to be even faster and mean annual temperature may increase by 4-7 degrees C. The implications of global warming are of immense proportions because glaciers and ice sheets will melt faster and become increasingly prone to collapse. In Greenland, discharge from outlet glaciers is responsible for about half the annual loss of ice. The other lost half is due to runoff of surface meltwater. The combined effect of iceberg discharge and surface melt are currently greater than the total amount of snowfall falling onto the Greenland Ice Sheet. This ice sheet is therefore shrinking while releasing freshwater into the Atlantic Ocean. The imbalance amounted to -90 cubic km per year for 1996 and increased to -140 cubic km per year by 2000. In 2005, this imbalance may have increased to as much as -220 cubic km per year. The size of the Greenland Ice Sheet is thus diminishing at what appears to be a growing rate. Worldwide concern is associated with this trend because ice-sheet decay results in global sea-level rise and possibly even an obstruction of oceanic circulation, which in key places - such as the North Atlantic - is sensitive to freshwater released from melting ice masses. The Greenland Ice Sheet rests on bedrock above or close to sea level. Glaciologists have for years assumed that such position would be stable and that demise of the ice sheet would require thousands of years even under extreme global warming scenarios. This assumption may need revision. It was shown recently that surface meltwater could penetrate through over 1km of ice to the base of the Greenland Ice Sheet and cause ice-flow speed-up due to faster basal sliding. This mechanism is potentially dangerous because accelerated ice flow leads to thinning, which in turn leads to an increase in surface melt since a larger part of the ice sheet moves into lower and warmer elevations. The Greenland Ice Sheet may therefore be far more prone to decay than it was assumed in earlier projections of global warming. However, up until now the mechanisms by which this dynamic response between surface melt and ice flow have only been generally understood and the present generation of climate-ice sheet models which are used to forecast future sea-level change do not include them in any rigorous manner. This is particularly true in respect of: 1) the extent to which the surface, interior and basal water-plumbing and ice flow systems can moderate, amplify and transmit the dynamic response away into the interior of the ice sheet thereby drawing the inland ice reservoir down and, 2) the extent to which future changes in Greenland temperatures may increase both the area and length of time of which the ice sheet directly experiences these effects. This project directly addresses both of these shortcomings in current models and will implement a set of fieldwork, satellite remote-sensing and comprehensive Greenland Ice Sheet modelling simulations that will fully assess and implement those 'dynamical processes related to ice flow not included in current models... (which) could increase the vulnerability of the ice sheets to warming, increasing future sea-level rise.' (IPCC, WG1 - 2007).
越来越多的科学研究表明,人类活动,例如燃烧化石燃料,增加了大气中吸热气体的浓度。据估计,如果我们继续向大气中添加二氧化碳和其他温室气体,本世纪全球气温将上升2-5摄氏度。在北极,变暖的速度预计会更快,年平均气温可能会上升4-7摄氏度。全球变暖的影响是巨大的,因为冰川和冰盖融化的速度会更快,变得越来越容易崩溃。在格陵兰岛,从出口冰川排放的冰块约占每年冰块损失的一半。另一半损失是由于地表融化水的径流。目前,冰山排放和地表融化的综合影响大于格陵兰冰盖上的降雪量。因此,在向大西洋释放淡水的同时,这块冰盖正在缩小。不平衡在1996年达到每年-90立方公里,到2000年增加到每年-140立方公里。2005年,这种不平衡可能会增加到每年-220立方公里。因此,格陵兰冰盖的大小似乎正在以更快的速度缩小。这一趋势引起了全世界的关注,因为冰盖退化导致全球海平面上升,甚至可能阻碍海洋循环,在北大西洋等关键地区,海洋循环对融化的冰块释放的淡水很敏感。格陵兰冰盖位于海平面以上或接近海平面的基岩上。冰川学家多年来一直认为,这样的位置将是稳定的,即使在极端全球变暖的情况下,冰盖的消亡也需要数千年的时间。这一假设可能需要修正。最近有研究表明,地表融化的水可以穿透超过1公里的冰层到达格陵兰冰盖底部,并由于基底部滑动速度更快而导致冰流加速。这种机制是潜在的危险,因为加速的冰流导致变薄,进而导致表面融化的增加,因为冰盖的大部分移动到更低和更温暖的海拔。因此,格陵兰冰盖可能比早先对全球变暖的预测更容易衰退。然而,到目前为止,表面融化和冰流之间的这种动态反应的机制只被普遍理解,而用于预测未来海平面变化的当代气候-冰盖模型没有以任何严格的方式包括这些机制。在以下方面尤其如此:1)地面、内部和基础水管和冰流系统可以在多大程度上缓和、放大并将动态响应传递到冰盖内部,从而将内陆冰水库拉低;2)未来格陵兰温度的变化可能会增加冰盖直接经历这些影响的面积和时间长度。该项目直接解决了当前模型中的这两个缺点,并将实施一套实地考察、卫星遥感和全面的格陵兰冰盖模型模拟,以全面评估和实施当前模型中未包括的与冰流相关的动态过程……这可能会增加冰盖对气候变暖的脆弱性,从而增加未来海平面上升的可能性。(气专委,WG1-2007)。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cascading lake drainage on the Greenland Ice Sheet triggered by tensile shock and fracture.
  • DOI:
    10.1038/s41467-018-03420-8
  • 发表时间:
    2018-03-14
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Christoffersen P;Bougamont M;Hubbard A;Doyle SH;Grigsby S;Pettersson R
  • 通讯作者:
    Pettersson R
Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall
  • DOI:
    10.1038/ngeo2482
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
    18.3
  • 作者:
    Doyle, Samuel H.;Hubbard, Alun;Hubbard, Bryn
  • 通讯作者:
    Hubbard, Bryn
Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow.
  • DOI:
    10.1126/sciadv.1603071
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Kulessa B;Hubbard AL;Booth AD;Bougamont M;Dow CF;Doyle SH;Christoffersen P;Lindbäck K;Pettersson R;Fitzpatrick AAW;Jones GA
  • 通讯作者:
    Jones GA
Partitioning effects from ocean and atmosphere on the calving stability of Kangerdlugssuaq Glacier, East Greenland
  • DOI:
    10.3189/2012aog60a087
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Christoffersen, Poul;O'Leary, Martin;van den Broeke, Michiel
  • 通讯作者:
    van den Broeke, Michiel
Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions
  • DOI:
    10.5194/tc-5-701-2011
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Christoffersen, P.;Mugford, R. I.;Benham, T. J.
  • 通讯作者:
    Benham, T. J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Poul Christoffersen其他文献

Subglacial water amplifies Antarctic contributions to sea-level rise
冰下水加剧了南极洲对海平面上升的贡献
  • DOI:
    10.1038/s41467-025-58375-4
  • 发表时间:
    2025-04-07
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Chen Zhao;Rupert Gladstone;Thomas Zwinger;Fabien Gillet-Chaulet;Yu Wang;Justine Caillet;Pierre Mathiot;Leopekka Saraste;Eliot Jager;Benjamin K. Galton-Fenzi;Poul Christoffersen;Matt A. King
  • 通讯作者:
    Matt A. King

Poul Christoffersen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Poul Christoffersen', 18)}}的其他基金

Dynamical control on the response of Pine Island Glacier
松岛冰川响应的动力控制
  • 批准号:
    NE/J005800/1
  • 财政年份:
    2013
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Research Grant
Subglacial Access and Fast Ice Research Experiment (SAFIRE): Resolving the Basal Control on Ice Flow and Calving in Greenland
冰下通道和快速结冰研究实验(SAFIRE):解决格陵兰岛冰流和崩解的基础控制问题
  • 批准号:
    NE/K005871/1
  • 财政年份:
    2013
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Research Grant
Investigating basal conditions and flow dynamics on Vestfonna Ice Cap, Svalbard
研究斯瓦尔巴群岛韦斯特丰纳冰盖的基础条件和流动动力学
  • 批准号:
    NE/F011466/1
  • 财政年份:
    2008
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Research Grant
Understanding contemporary change in the West Antarctic ice sheet
了解南极西部冰盖的当代变化
  • 批准号:
    NE/E005950/1
  • 财政年份:
    2007
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Research Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Risk Factor Analysis and Dynamic Response for Epidemics in Heterogeneous Populations
异质人群流行病危险因素分析及动态应对
  • 批准号:
    2344576
  • 财政年份:
    2024
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Continuing Grant
Static and dynamic friction response of metallic nano-contacts by microscopic nanomechanical measurement
通过微观纳米力学测量金属纳米接触的静态和动态摩擦响应
  • 批准号:
    23H00255
  • 财政年份:
    2023
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Autonomous high-precision 3D modeling of standard bridge using optical measurement and dynamic response
使用光学测量和动态响应对标准桥梁进行自主高精度 3D 建模
  • 批准号:
    23K04008
  • 财政年份:
    2023
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modelling and dynamic assessment of integrated health and care pathways enhancing response capacity of health systems
综合卫生保健路径的建模和动态评估可增强卫生系统的应对能力
  • 批准号:
    10064147
  • 财政年份:
    2023
  • 资助金额:
    $ 11.85万
  • 项目类别:
    EU-Funded
ShEEP Request for Sensorimotor Dynamic Response Measurement System
ShEEP 请求感觉运动动态响应测量系统
  • 批准号:
    10741038
  • 财政年份:
    2023
  • 资助金额:
    $ 11.85万
  • 项目类别:
Efficient and rapidly SCAlable EU-wide evidence-driven Pandemic response plans through dynamic Epidemic data assimilation
通过动态流行病数据同化,制定高效、快速、可扩展的欧盟范围内证据驱动的流行病应对计划
  • 批准号:
    10051037
  • 财政年份:
    2023
  • 资助金额:
    $ 11.85万
  • 项目类别:
    EU-Funded
Categorical and dimensional investigations of dynamic functional connectivity and behavior during response inhibition in children with and without ADHD
患有和不患有多动症的儿童在反应抑制过程中动态功能连接和行为的分类和维度研究
  • 批准号:
    10606133
  • 财政年份:
    2023
  • 资助金额:
    $ 11.85万
  • 项目类别:
Dynamic analysis of beta cell attacks in response to virus infection in Human pancreatic slices
人胰腺切片中β细胞响应病毒感染的攻击的动态分析
  • 批准号:
    10674127
  • 财政年份:
    2023
  • 资助金额:
    $ 11.85万
  • 项目类别:
Blunting of the Myofilament Beta-Adrenergic Response in HCM: Structural-Dynamic Mechanisms
HCM 中肌丝 β 肾上腺素反应的钝化:结构动力学机制
  • 批准号:
    10748921
  • 财政年份:
    2023
  • 资助金额:
    $ 11.85万
  • 项目类别:
Design, development, and evaluation of a method to create patient specific augmented reality model for accurate anatomical guidance and dynamic response during spine surgery.
设计、开发和评估一种方法来创建患者特定的增强现实模型,以便在脊柱手术期间实现准确的解剖引导和动态响应。
  • 批准号:
    561740-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了