Impact of Algal Harvesting Technology on Ecosystem Function
藻类捕捞技术对生态系统功能的影响
基本信息
- 批准号:NE/J024767/1
- 负责人:
- 金额:$ 22.73万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our ever increasing reliance on fossil fuels as an energy source is causing mankind multiple problems. Global political stability is strongly influenced by fossil fuel producing countries and prices vary accordingly. Fossil fuel availability is also finite and therefore alternatives will inevitably be required. However, the detrimental impact on the environment is perhaps the most significant. Rising CO2 levels are a major contributor to climate change. Biofuels are an alternative source of energy derived from renewable biological material. The major advantage of this fuel source is the carbon neutrality because CO2 emission is balanced by the CO2 fixation used to make the biological material. However, the initial wave of enthusiasm for producing biofuels was met by an unpredicted but substantial side effect. Agricultural land was being used for biofuel crops instead of food crops and compounding the food shortage problem. Food deficiency is expected to worsen as the world's population reaches the predicted 9.2 billion by 2050 (1). Therefore, caution in terms of the social, economic and environmental impacts of biofuel production must be taken. Although these issues are highly relevant, it can be argued that the main driver for moving towards renewable energy sources remains economical. The efficiency of biofuel production from algae has improved dramatically in the last few years, for example, increased lipid fuel content through genetic engineering (2), however, several bottlenecks remain to make it economically viable. One major issue is the energy cost associated with harvesting algae, where up to 30% of costs can originate (3). At the University of Sheffield, a multi-award winning device can be used to harvest cells using minimum energy input and therefore has the ability to make biofuel production more economically competitive with fossil fuels (4). Existing techniques have been shown to be intrusive and have scale-up issues. The device uses laminar flow to create a bubble flux and has been shown to be 99.2% efficient in harvesting (3). The technology can be used in monoculture algal ponds and natural lake ecosystems, although the environmental impact of process has not been tested. With increasing food demand comes the increase in drinking water demand, especially in rapidly developing countries like China and India (5). Eutrophication of drinking water lakes has caused fears of major water shortages to become a reality (6), and this environmental problem is prevalent worldwide (7). The microflotation device has the ability to remediate the lake of algae and restore for subsequent drinking water treatment. The aim of using the harvested algae for biofuel production has been proposed in China to offset the energy input required. In this project, environmental impact of this technology will be assessed at the microcosm level using an artificial lake ecosystem. The removal of algae and bacteria from the lake has the potential to alter ecosystem structure and function and impact on food webs. Microbes play an essential role in chemical and nutrient cycling and therefore it is likely to be altered by the harvesting process. In this project, the harvesting intensity will be varied and the changes will be quantified, monitored and modelled, using a quantitative metaproteomic approach. This method specifically looks at protein production which is crucial as proteins are the functional entities in cells. Metabolic modelling using this data will be combined with ecological modelling of food web structure. The overall objective is to be able to control ecosystem stability for either continuous algal farming for biofuel, or water remediation with subsequent generation of biofuels. 1. Levy, M., et al. 2005.2. Radakovits, R., et al., 20103. Hanotu, J., et al., 20114. Zimmerman, WB. 20115. Wu, C., 20116. Gao, C., et al. 20107. Dodds, W. K., et al., 2009
我们对化石燃料作为能源的日益依赖给人类带来了许多问题。全球政治稳定受到化石燃料生产国的强烈影响,价格也相应变化。化石燃料的供应也是有限的,因此不可避免地需要替代品。然而,对环境的不利影响可能是最重要的。二氧化碳水平上升是气候变化的主要因素。生物燃料是从可再生生物材料中获得的替代能源。这种燃料来源的主要优点是碳中和,因为CO2排放通过用于制造生物材料的CO2固定来平衡。然而,生产生物燃料的最初热情受到了意想不到但却很大的副作用的影响。农业用地被用于种植生物燃料作物而不是粮食作物,加剧了粮食短缺问题。预计到2050年,世界人口将达到92亿,粮食短缺问题将进一步恶化(1)。因此,必须谨慎对待生物燃料生产的社会、经济和环境影响。虽然这些问题具有高度相关性,但可以说,转向可再生能源的主要驱动力仍然是经济性。在过去的几年里,从藻类生产生物燃料的效率已经大大提高,例如,通过基因工程增加了脂质燃料含量(2),然而,仍然存在一些瓶颈,使其在经济上可行。一个主要问题是与收获藻类相关的能源成本,其中高达30%的成本可能来自(3)。在谢菲尔德大学,一种屡获殊荣的设备可用于以最小的能量输入收获细胞,因此有能力使生物燃料生产在经济上比化石燃料更具竞争力(4)。现有的技术已被证明是侵入性的,并有规模扩大的问题。该设备使用层流来产生气泡通量,并且已被证明在收获中有99.2%的效率(3)。该技术可用于单一藻类池塘和天然湖泊生态系统,尽管该过程的环境影响尚未得到测试。随着粮食需求的增加,饮用水需求也在增加,特别是在中国和印度等快速发展的国家。饮用水湖泊的富营养化已经引起了人们对严重水资源短缺的担忧,这一环境问题在世界范围内普遍存在。微浮选装置具有修复藻类湖泊并恢复用于后续饮用水处理的能力。在中国,已经提出了利用收获的藻类生产生物燃料的目的,以抵消所需的能源投入。在该项目中,将使用人工湖生态系统在微观层面评估该技术的环境影响。从湖中清除藻类和细菌有可能改变生态系统的结构和功能,并对食物网产生影响。微生物在化学和营养循环中起着至关重要的作用,因此很可能会被收获过程所改变。在这个项目中,收获强度将是不同的,变化将被量化,监测和建模,使用定量元蛋白质组学方法。这种方法特别关注蛋白质的产生,这是至关重要的,因为蛋白质是细胞中的功能实体。使用这些数据的代谢建模将与食物网结构的生态建模相结合。总体目标是能够控制生态系统的稳定性,无论是连续的藻类养殖生物燃料,或水修复与后续一代的生物燃料。1.利维,M.,等人2005.2. Radakovits,R.,例如,20103. Hanotu,J.,例如,20114.齐默尔曼,WB。20115.吴,C.,20116.高氏C.,等人,20107。Dodds,W. K.,例如,2009
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Harvesting Environmental Microalgal Blooms for Remediation and Resource Recovery: A Laboratory Scale Investigation with Economic and Microbial Community Impact Assessment.
- DOI:10.3390/biology7010004
- 发表时间:2017-12-29
- 期刊:
- 影响因子:4.2
- 作者:Pandhal J;Choon WL;Kapoore RV;Russo DA;Hanotu J;Wilson IAG;Desai P;Bailey M;Zimmerman WJ;Ferguson AS
- 通讯作者:Ferguson AS
Cell Lysis and Detoxification of Cyanotoxins Using a Novel Combination of Microbubble Generation and Plasma Microreactor Technology for Ozonation.
- DOI:10.3389/fmicb.2018.00678
- 发表时间:2018
- 期刊:
- 影响因子:5.2
- 作者:Pandhal J;Siswanto A;Kuvshinov D;Zimmerman WB;Lawton L;Edwards C
- 通讯作者:Edwards C
Mass Spectrometry of Proteins - Methods and Protocols
蛋白质质谱 - 方法和实验方案
- DOI:10.1007/978-1-4939-9232-4_10
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Russo D
- 通讯作者:Russo D
Circular economy fertilization: Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions
- DOI:10.1016/j.geoderma.2018.07.049
- 发表时间:2019-01-15
- 期刊:
- 影响因子:6.1
- 作者:Alobwede, Emanga;Leake, Jonathan R.;Pandhal, Jagroop
- 通讯作者:Pandhal, Jagroop
Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery.
- DOI:10.3390/biology7010018
- 发表时间:2018-02-15
- 期刊:
- 影响因子:4.2
- 作者:Kapoore RV;Butler TO;Pandhal J;Vaidyanathan S
- 通讯作者:Vaidyanathan S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jagroop Pandhal其他文献
N-Linked glycoengineering for human therapeutic proteins in bacteria
- DOI:
10.1007/s10529-010-0289-6 - 发表时间:
2010-05-07 - 期刊:
- 影响因子:2.100
- 作者:
Jagroop Pandhal;Phillip C. Wright - 通讯作者:
Phillip C. Wright
Synthetic microbial ecosystems for biotechnology
- DOI:
10.1007/s10529-014-1480-y - 发表时间:
2014-02-22 - 期刊:
- 影响因子:2.100
- 作者:
Jagroop Pandhal;Josselin Noirel - 通讯作者:
Josselin Noirel
Emission control and carbon capture from diesel generators and engines: A decade-long perspective
柴油发电机和发动机的排放控制及碳捕集:十年的视角
- DOI:
10.1016/j.ccst.2025.100379 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:10.500
- 作者:
Shervan Babamohammadi;Amy R Birss;Hamid Pouran;Jagroop Pandhal;Tohid N. Borhani - 通讯作者:
Tohid N. Borhani
Large-scale cultivation of emSynechocystis/em sp. PCC6803 for the production of Poly(3-hydroxybutyrate) and its potential applications in the manufacturing of bulk and medical prototypes
emsynechocystis/em sp的大规模培养。 PCC6803用于生产聚(3-羟基丁酸)及其在批量和医疗原型制造中的潜在应用
- DOI:
10.1016/j.nbt.2024.08.497 - 发表时间:
2024-11-25 - 期刊:
- 影响因子:4.900
- 作者:
Elbaraa Elghazy;Syed Mohammad Daniel Syed Mohamed;Kamonchanok Wianglor;Santosh Tetali;Mahendra Raut;Ipsita Roy;Jagroop Pandhal - 通讯作者:
Jagroop Pandhal
Isolation and characterisation of microsatellite loci in the papillose woolly bat, Kerivoula papillosa (Chiroptera: Vespertilionidae)
- DOI:
10.1007/s10592-007-9384-1 - 发表时间:
2007-08-02 - 期刊:
- 影响因子:1.700
- 作者:
Matthew J. Struebig;Gavin J. Horsburgh;Jagroop Pandhal;Alison Triggs;Akbar Zubaid;Tigga Kingston;Deborah A. Dawson;Stephen J. Rossiter - 通讯作者:
Stephen J. Rossiter
Jagroop Pandhal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jagroop Pandhal', 18)}}的其他基金
Sustainable manufacture of biodegradable film packaging from recalcitrant waste streams
利用顽固废物流可持续制造可生物降解薄膜包装
- 批准号:
EP/X021440/1 - 财政年份:2023
- 资助金额:
$ 22.73万 - 项目类别:
Research Grant
World's first biologically-activated aerosols: for carbon capture without the need for storage
世界上第一个生物活性气溶胶:无需储存即可捕获碳
- 批准号:
EP/X016951/1 - 财政年份:2022
- 资助金额:
$ 22.73万 - 项目类别:
Research Grant
Engineering Microbial Consortia for Industry
工业工程微生物联盟
- 批准号:
EP/S020705/1 - 财政年份:2019
- 资助金额:
$ 22.73万 - 项目类别:
Research Grant
Detoxification and Multi-Resource Recovery from Landfill Leachate
垃圾渗滤液的无毒化和多资源回收
- 批准号:
NE/P016820/1 - 财政年份:2017
- 资助金额:
$ 22.73万 - 项目类别:
Research Grant
The potential to restore eutrophic freshwater systems in the UK with economic benefits
恢复英国富营养化淡水系统并带来经济效益的潜力
- 批准号:
NE/K015591/1 - 财政年份:2013
- 资助金额:
$ 22.73万 - 项目类别:
Research Grant
相似海外基金
Multifunctional polymers for combined algal inactivation and flocculation
用于组合藻类灭活和絮凝的多功能聚合物
- 批准号:
DE240100987 - 财政年份:2024
- 资助金额:
$ 22.73万 - 项目类别:
Discovery Early Career Researcher Award
RII Track-4: @NASA: Next Generation Hyperspectral Approaches to Detect Harmful Algal Blooms
RII Track-4:@NASA:检测有害藻华的下一代高光谱方法
- 批准号:
2327287 - 财政年份:2024
- 资助金额:
$ 22.73万 - 项目类别:
Standard Grant
Demonstrating ocean acidification-driven changes in the ecological role of benthic macroherbivores in controlling algal habitats
展示海洋酸化驱动的底栖大型食草动物在控制藻类栖息地中的生态作用的变化
- 批准号:
23K26924 - 财政年份:2024
- 资助金额:
$ 22.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Ovarian impacts of extreme heat and co-exposure to climate change-induced harmful algal bloom toxins (Admin Supplement to R01ES032144)
极端高温和共同暴露于气候变化引起的有害藻华毒素对卵巢的影响(R01ES032144 的管理补充)
- 批准号:
10838834 - 财政年份:2023
- 资助金额:
$ 22.73万 - 项目类别:
Exploring the role of RuBisCo binding domains in algal carbon fixation
探索 RuBisCo 结合域在藻类固碳中的作用
- 批准号:
2885461 - 财政年份:2023
- 资助金额:
$ 22.73万 - 项目类别:
Studentship
Novel algal monitoring system using multiple-wavelength excitation
使用多波长激发的新型藻类监测系统
- 批准号:
23K14015 - 财政年份:2023
- 资助金额:
$ 22.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Demonstrating ocean acidification-driven changes in the ecological role of benthic macroherbivores in controlling algal habitats
展示海洋酸化驱动的底栖大型食草动物在控制藻类栖息地中的生态作用的变化
- 批准号:
23H02231 - 财政年份:2023
- 资助金额:
$ 22.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: ORCC: Carbon fixation in future oceans: experimental adaptation of algal and cyanobacterial CO2-concentrating mechanisms to a changing climate
合作研究:ORCC:未来海洋的碳固定:藻类和蓝藻二氧化碳浓缩机制对气候变化的实验适应
- 批准号:
2222519 - 财政年份:2023
- 资助金额:
$ 22.73万 - 项目类别:
Standard Grant
Algal Biomass to Hydrogen: A Circular Approach for Sustainable Hydrogen Production Via Eco-friendly Supercritical Water Technology
藻类生物质制氢:通过环保超临界水技术实现可持续制氢的循环方法
- 批准号:
2890597 - 财政年份:2023
- 资助金额:
$ 22.73万 - 项目类别:
Studentship
Collaborative Research: ORCC: Carbon fixation in future oceans: experimental adaptation of algal and cyanobacterial CO2-concentrating mechanisms to a changing climate
合作研究:ORCC:未来海洋的碳固定:藻类和蓝藻二氧化碳浓缩机制对气候变化的实验适应
- 批准号:
2222518 - 财政年份:2023
- 资助金额:
$ 22.73万 - 项目类别:
Standard Grant