Adaptation of emerging computational technology for carbon and palaeoclimate modeling
新兴计算技术对碳和古气候建模的适应
基本信息
- 批准号:NE/K00901X/1
- 负责人:
- 金额:$ 50.03万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the grand challenges to human civilization is man-made climate change, much of which is caused by the burning of fossil fuels that releases CO2 to the atmosphere. Current research in climate science is aiming to better understand the relationship between natural changes of atmospheric CO2 levels and natural climate change over the long course of Earth's history. Reconstructions based on sediment cores recovered from the deep ocean demonstrate that over the last ~50 million years Earth's climate has unsteadily transitioned from warm "greenhouse" conditions with no ice in Greenland and Antarctica to the modern "icehouse" state with continental-scale ice caps near the poles. Other types of measurements on these deep sea sediments indicate that atmospheric CO2 levels and ocean acidity have broadly declined over the same timeframe, thereby raising the possibility that atmospheric CO2 decline may have been a key reason for ~50 million years of global cooling. The central aim of the work proposed here is to improve our understanding of the role of atmospheric CO2 in regulating the state of the climate system.Because of the complexity of the involved physical, chemical and biological processes computer models have become a central tool in climate research. Considering the vastness of our planet and the many million years of Earth history, it becomes clear that Earth System modeling is a computational challenge that requires the use of ever-faster supercomputers. The greatest change in high-performance computing over the last decade and the foreseeable future is the development of "General Purpose computing on Graphics Processing Units" (GPGPU), which greatly reduces the size and energy consumption a given computer needs to do a given calculation in a given amount of time. Thus, within the limited space and power supply of a building that houses a supercomputer much larger computational problems can be solved using GPGPU rather than the classical approach that relies on CPU (Central Processing Unit) hardware. However, the existing Earth System models were developed for CPU-architectures and are therefore unable to fully exploit the benefits from GPGPU. The approach of the work proposed here is to develop GPU-native model components (marine biology, chemical mixing by physical ocean circulation, CO2-exchange between ocean and atmosphere, etc.) that enjoy the full computational benefit from GPGPU. This aspect of the work builds on the collaboration of and the exchange of knowledge between scientists in the fields of high-performance computing and the Earth sciences.Ultimately, a better understanding of Earth history and climate change must be derived from reconstructions based on the sedimentary record as evidence. These observations are frequently compared to model simulations as a way of verifying that a particular simulation is in agreement with data of different types. With the work proposed here it will become possible to systematically compute thousands of simulations, followed by meticulous comparison to observations. Based on this advance, the cross-comparison between data and models (and between data and data) will help to better understand how the Earth System has changed in the past, and what were the driving processes. This knowledge of the past will then inform our outlook for the climate and the carbon cycle of the future.
人类文明面临的重大挑战之一是人为造成的气候变化,其中大部分是由于燃烧化石燃料向大气中释放二氧化碳造成的。目前的气候科学研究旨在更好地了解地球历史长河中大气CO2水平的自然变化与自然气候变化之间的关系。基于从深海中回收的沉积物岩心的重建表明,在过去的约5000万年里,地球的气候已经从格陵兰岛和南极洲没有冰的温暖的“温室”条件不稳定地过渡到现代的“冰库”状态,在两极附近有大陆规模的冰盖。对这些深海沉积物的其他类型的测量表明,大气中的二氧化碳水平和海洋酸度在同一时间段内普遍下降,从而提高了大气中二氧化碳减少可能是约5000万年全球变冷的关键原因的可能性。这里提出的工作的中心目标是提高我们对大气CO2在调节气候系统状态中的作用的理解。由于所涉及的物理、化学和生物过程的复杂性,计算机模型已经成为气候研究的核心工具。考虑到我们星球的浩瀚和地球数百万年的历史,很明显,地球系统建模是一个计算挑战,需要使用越来越快的超级计算机。在过去十年和可预见的未来,高性能计算的最大变化是“图形处理单元上的通用计算”(GPGPU)的发展,它大大减少了给定计算机在给定时间内进行给定计算所需的大小和能耗。因此,在容纳超级计算机的建筑物的有限空间和电力供应内,可以使用GPGPU而不是依赖于CPU(中央处理单元)硬件的经典方法来解决更大的计算问题。然而,现有的地球系统模型是为CPU架构开发的,因此无法充分利用GPGPU的优势。这里提出的工作方法是开发GPU本地模型组件(海洋生物,物理海洋环流的化学混合,海洋和大气之间的CO2交换等)。享受GPGPU的全部计算优势。这方面的工作建立在高性能计算和地球科学领域的科学家之间的合作和知识交流的基础上,最终,必须通过以沉积记录为证据的重建来更好地了解地球历史和气候变化。这些观察结果经常与模型模拟进行比较,以验证特定模拟与不同类型的数据是否一致。有了这里提出的工作,将有可能系统地计算数千个模拟,然后与观测进行细致的比较。基于这一进展,数据和模型之间(以及数据和数据之间)的交叉比较将有助于更好地了解地球系统在过去是如何变化的,以及驱动过程是什么。这些对过去的了解将为我们对未来气候和碳循环的展望提供信息。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A record of Neogene seawater d<sup>11</sup>B reconstructed from paired d<sup>11</sup>B analyses on benthic and planktic foraminifera
新近纪海水d记录
- DOI:10.5194/cp-2015-177
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Greenop R
- 通讯作者:Greenop R
Distal and proximal controls on the silicon stable isotope signature of North Atlantic Deep Water
- DOI:10.1016/j.epsl.2015.10.025
- 发表时间:2015-12
- 期刊:
- 影响因子:5.3
- 作者:G. F. D. Souza;R. Slater;M. Hain;M. Brzezinski;J. Sarmiento
- 通讯作者:G. F. D. Souza;R. Slater;M. Hain;M. Brzezinski;J. Sarmiento
Causes of ice age intensification across the Mid-Pleistocene Transition.
- DOI:10.1073/pnas.1702143114
- 发表时间:2017-12-12
- 期刊:
- 影响因子:11.1
- 作者:Chalk TB;Hain MP;Foster GL;Rohling EJ;Sexton PF;Badger MPS;Cherry SG;Hasenfratz AP;Haug GH;Jaccard SL;Martínez-García A;Pälike H;Pancost RD;Wilson PA
- 通讯作者:Wilson PA
The effects of secular calcium and magnesium concentration changes on the thermodynamics of seawater acid/base chemistry: Implications for Eocene and Cretaceous ocean carbon chemistry and buffering
- DOI:10.1002/2014gb004986
- 发表时间:2015-05-01
- 期刊:
- 影响因子:5.2
- 作者:Hain, Mathis P.;Sigman, Daniel M.;Haug, Gerald H.
- 通讯作者:Haug, Gerald H.
Distinct roles of the Southern Ocean and North Atlantic in the deglacial atmospheric radiocarbon decline
- DOI:10.1016/j.epsl.2014.03.020
- 发表时间:2014-05-15
- 期刊:
- 影响因子:5.3
- 作者:Hain, Mathis P.;Sigman, Daniel M.;Haug, Gerald H.
- 通讯作者:Haug, Gerald H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mathis Hain其他文献
Mathis Hain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mathis Hain', 18)}}的其他基金
Collaborative Research: Uncovering marine carbon chemistry dynamics during the deglaciation with boron isotopes and radiocarbon
合作研究:用硼同位素和放射性碳揭示冰消过程中的海洋碳化学动力学
- 批准号:
2032343 - 财政年份:2021
- 资助金额:
$ 50.03万 - 项目类别:
Standard Grant
相似海外基金
Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
- 批准号:
2400087 - 财政年份:2024
- 资助金额:
$ 50.03万 - 项目类别:
Standard Grant
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 50.03万 - 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 50.03万 - 项目类别:
Triage of Developmental and Reproductive Toxicants using an In vitro to In Vivo Extrapolation (IVIVE)-Toxicokinetic Computational modeling Application
使用体外到体内外推法 (IVIVE) 对发育和生殖毒物进行分类 - 毒代动力学计算模型应用
- 批准号:
10757140 - 财政年份:2023
- 资助金额:
$ 50.03万 - 项目类别:
Computational Methods for Emerging Spatially-resolved Transcriptomics with Multiple Samples
新兴的多样本空间分辨转录组学的计算方法
- 批准号:
10711312 - 财政年份:2023
- 资助金额:
$ 50.03万 - 项目类别:
Domain adaptation approaches to unify established and emerging sequencing technologies
领域适应方法统一现有和新兴的测序技术
- 批准号:
10643544 - 财政年份:2023
- 资助金额:
$ 50.03万 - 项目类别:
Spatially Resolved CRISPR Genomics for Dissecting Testicular Gene Functions at Scale
空间分辨 CRISPR 基因组学用于大规模剖析睾丸基因功能
- 批准号:
10573701 - 财政年份:2023
- 资助金额:
$ 50.03万 - 项目类别:
Leveraging evolutionary analyses and machine learning to discover multiscale molecular features associated with antibiotic resistance
利用进化分析和机器学习发现与抗生素耐药性相关的多尺度分子特征
- 批准号:
10658686 - 财政年份:2023
- 资助金额:
$ 50.03万 - 项目类别:
Mathematical Modeling and Scientific Computing for Infectious Disease Research
传染病研究的数学建模和科学计算
- 批准号:
10793008 - 财政年份:2023
- 资助金额:
$ 50.03万 - 项目类别:
Using Digital Signals from Credit Data for Early Detection of Alzheimer's Disease and Related Dementias
使用信用数据中的数字信号早期检测阿尔茨海默病和相关痴呆症
- 批准号:
10590416 - 财政年份:2023
- 资助金额:
$ 50.03万 - 项目类别: