Beyond Biorecovery: environmental win-win by biorefining of metallic wastes into new functional materials
超越生物回收:将金属废物生物精炼成新型功能材料,实现环境双赢
基本信息
- 批准号:NE/K015664/1
- 负责人:
- 金额:$ 8.96万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The last 30 years' research on metal biorecovery from wastes paid scant attention to the strong CONTEMPORARY demands for (i) conservation of dwindling vital resources (e.g platinum group metals (PGM) and, recently rare earth elements, (REE), base metals and uranium) and (ii) the unequivocal need to extract and refine them in a non-polluting, low-energy way. On the other hand, 21stC technologies increasingly rely on nanomaterials as these have novel properties not seen in bulk materials. Bacteria can fabricate nanoparticles, bottom up, atom by atom, with exquisite fine control offered by enzymatic synthesis and bio-scaffolding that chemistry cannot emulate. Bio-nanoparticles have proven applications in green chemistry, low carbon energy, environmental protection and in, potentially, photonic applications (e.g. nano-Au). Bacteria can be grown scalably and cheaply, i.e. step changes in facile production, scalability and price. Recent work showed the ability of bacteria to make these nanomaterials from primary and secondary wastes, yielding, in some cases, a metallic mixture which can show better activity than 'pure' nanoparticles. Fabrication of structured bimetallics can be hard to achieve by chemical means. For some metals like REEs and uranium their biorecovery from wastes (U) and scraps (REE) into bulk crystalline minerals can make 'enriched' solids for delivery into further commercial refining to make new magnets (REEs) or nuclear fuel (U). Biofabricating these solids is beyond the ability of living cells although biogenic nano-uranium phosphate can be used to 'hoover' base metals (and radionuclides) with a capacity several orders of magnitude greater than commercial ion exchangers.This project will operate at several levels of complexity, maturity and risk. Base metal mining wastes (e.g. Cu, Ni) will be biorefined into concentrated sludges for chemical reprocessing or alternatively for evaluating the scope to make base metal-bionanoproducts. U-mining waste will be biorefined into phosphate minerals for commercial fabrication into nuclear fuels. Precious metal wastes will be converted into bionanomaterials for catalysis and energy applications. In all of these examples the environment will be spared the dual impact of both the primary source pollution and the high energy demand of processing from primary 'crude'.Metallic scraps present problems as they require strong acids for dissolution. Approaches will include the use of acidophilic bacteria, use of alkalinizing enzymes or using bacteria to first make a chemical catalyst (under benign conditions) which can then convert the target metal of interest from the waste leachate into new nanomaterials (a hybrid living/nonliving system, already proven). The interface between biology, chemistry, mineralogy and physics, exemplified by nanoparticles in their unique 'biochemical nest', will receive special attention as this is where major discoveries are to be made; hence cutting edge technologies (e.g. X ray microscopy with nanoscale elemental mapping) will be applied in order to relate structure to function, and validate the contribution of upstream waste amendment, doping or 'blending' to these, as well as novel materials processing already shown to increase bio-nanoparticle efficacy.Secondary wastes to be 'scoped' for biorefining will include magnet scraps (REEs), spent automotive catalysts, road dusts (precious metals, Fe,Ce) and electronic scrap (Cu, precious metals). Their complexity and refractory nature makes for a higher 'risk' than with mine wastes but the 'payoff' compensates, in that the volumes tend to be lower, and the potential for 'doping' or 'steering' to fabricate/steer engineered nanomaterials is correspondingly higher. The B3 project will have an embedded significant (~15%) Life Cycle Analysis assessment of the systems chosen for special focus, and end-user trialing following scoping studies in conjunction with an industrial platform.
过去30年对从废物中生物回收金属的研究很少注意到当代对以下方面的强烈需求:(i)保护日益减少的重要资源(例如铂族金属(PGM)和最近的稀土元素(REE)、贱金属和铀),以及(ii)明确需要以无污染、低能耗的方式提取和精炼它们。另一方面,21stC技术越来越依赖于纳米材料,因为这些材料具有散装材料所没有的新特性。细菌可以制造纳米粒子,自下而上,一个原子一个原子地制造,酶合成和生物支架提供了化学无法模仿的精细控制。生物纳米颗粒在绿色化学、低碳能源、环境保护以及潜在的光子应用(例如纳米金)中具有已证实的应用。细菌可以规模化和廉价地生长,即在容易的生产,可扩展性和价格方面的步骤变化。最近的研究表明,细菌有能力从一次和二次废物中制造这些纳米材料,在某些情况下,产生一种金属混合物,这种混合物比“纯”纳米颗粒表现出更好的活性。结构化双金属的制造可能难以通过化学手段实现。对于一些金属,如稀土和铀,它们从废物(U)和废料(REE)中生物回收成散装晶体矿物可以使“浓缩”固体用于进一步商业精炼,以制造新的磁铁(REEs)或核燃料(U)。生物制造这些固体超出了活细胞的能力,尽管生物源纳米磷酸铀可以用来“吸”贱金属(和放射性核素),其能力比商业离子交换剂大几个数量级。贱金属采矿废物(如铜、镍)将被生物精炼成浓缩污泥,用于化学再加工或用于评估制造贱金属生物纳米产品的范围。铀矿废料将被生物提炼成磷酸盐矿物,用于商业制造核燃料。贵金属废物将被转化为生物纳米材料,用于催化和能源应用。在所有这些例子中,环境将免于主要污染源和从主要“原油”加工的高能量需求的双重影响。金属废料存在问题,因为它们需要强酸来溶解。这些方法将包括使用嗜酸细菌、使用碱化酶或使用细菌首先制造化学催化剂(在良性条件下),然后将废物沥滤液中的目标金属转化为新的纳米材料(一种已经证明的生物/非生物混合系统)。生物学、化学、矿物学和物理学之间的界面,以纳米粒子在其独特的“生物化学巢”中为例,将受到特别关注,因为这是重大发现的地方;因此尖端技术(例如,X射线显微镜和纳米级元素绘图),以便将结构与功能联系起来,并验证上游废物修正的贡献,生物提炼“范围内”的二次废物包括磁铁废料(稀土元素)、废汽车催化剂、道路灰尘(贵金属、铁、铈)和电子废料(铜、贵金属)。它们的复杂性和难熔性使其“风险”比矿山废物更高,但“回报”得到了补偿,因为其体积往往较低,“掺杂”或“操纵"制造/操纵工程纳米材料的潜力相应较高。B3项目将对选择用于特别关注的系统进行嵌入式重要(约15%)生命周期分析评估,并在范围研究后结合工业平台进行最终用户试用。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuous biocatalytic recovery of neodymium and europium
- DOI:10.1039/c4ra14892d
- 发表时间:2015-01
- 期刊:
- 影响因子:3.9
- 作者:A. Murray;Sarah Singh;Dimitrios A. Vavlekas;M. R. Tolley;L. Macaskie
- 通讯作者:A. Murray;Sarah Singh;Dimitrios A. Vavlekas;M. R. Tolley;L. Macaskie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lynne Macaskie其他文献
Lynne Macaskie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lynne Macaskie', 18)}}的其他基金
Towards circularity: Upconversion of biowaste from primary bioprocess into two high value product streams
迈向循环:将生物废物从初级生物过程向上转化为两种高价值产品流
- 批准号:
BB/T010118/1 - 财政年份:2019
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Biogenic metal phosphates: Low cost, high capacity, stable 'lockups' for the removal of radionuclides from groundwater and decontamination solutions
生物金属磷酸盐:低成本、高容量、稳定的“锁定”,用于去除地下水和净化溶液中的放射性核素
- 批准号:
NE/L012537/1 - 财政年份:2014
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Beyond biorecovery: environmental win-win by biorefining of metallic wastes into new functional materials (B3)
超越生物回收:通过将金属废物生物精炼成新型功能材料实现环境双赢(B3)
- 批准号:
NE/L014076/1 - 财政年份:2014
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Biogeochemistry, Bioextraction and Biorecovery of Rare Earth Elements.
稀土元素的生物地球化学、生物提取和生物回收。
- 批准号:
NE/L002256/1 - 财政年份:2013
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Applying muon spin rotation to understand the magnetic behaviour of metallic bionanoparticles
应用μ子自旋旋转来了解金属生物纳米颗粒的磁性行为
- 批准号:
EP/J006483/1 - 财政年份:2011
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Novel precious metal nanocatalyst made by biofabrication
生物制造的新型贵金属纳米催化剂
- 批准号:
EP/H029567/1 - 财政年份:2010
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Photonic solutions for solar bioenergy
太阳能生物能源的光子解决方案
- 批准号:
G0902337/1 - 财政年份:2010
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Solid state NMR for dynamics and kinetics of hydrogen uptake and transport in novel bionanomaterials for energy applications ('Nano-NMR')
用于能源应用的新型生物纳米材料中氢吸收和传输的动力学和动力学的固态核磁共振(“纳米核磁共振”)
- 批准号:
EP/F027133/1 - 财政年份:2007
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Functional bionanomaterials and novel processing for targeted catalytic applications
用于目标催化应用的功能性生物纳米材料和新颖加工
- 批准号:
EP/D05768X/1 - 财政年份:2007
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Novel MR Selective Imaging of Transport and Growth in Biofilms
生物膜运输和生长的新型 MR 选择性成像
- 批准号:
EP/E012213/1 - 财政年份:2007
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
相似海外基金
Selective Metal Biorecovery from Lithium Ion Batteries
锂离子电池的选择性金属生物回收
- 批准号:
BB/X011720/1 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Biorecovery of valuable metals using extremely acidophilic microorganisms
利用极度嗜酸微生物生物回收有价金属
- 批准号:
26820394 - 财政年份:2014
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Beyond biorecovery: environmental win-win by biorefining of metallic wastes into new functional materials (B3)
超越生物回收:通过将金属废物生物精炼成新型功能材料实现环境双赢(B3)
- 批准号:
NE/L014114/1 - 财政年份:2014
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Beyond Biorecovery: environmental win-win by biorefining of metallic wastes into new functional materials (B3)
超越生物回收:通过将金属废物生物精炼成新型功能材料实现环境双赢(B3)
- 批准号:
NE/L013940/1 - 财政年份:2014
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Beyond biorecovery: environmental win-win by biorefining of metallic wastes into new functional materials (B3)
超越生物回收:通过将金属废物生物精炼成新型功能材料实现环境双赢(B3)
- 批准号:
NE/L014076/1 - 财政年份:2014
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Biogeochemistry, Bioextraction and Biorecovery of Rare Earth Elements.
稀土元素的生物地球化学、生物提取和生物回收。
- 批准号:
NE/L002256/1 - 财政年份:2013
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Biogeochemistry, Bioextraction and Biorecovery of Rare Earth Elements
稀土元素的生物地球化学、生物提取和生物回收
- 批准号:
NE/L002264/1 - 财政年份:2013
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Biogeochemistry, Bioextraction and Biorecovery of Rare Earth Elements - BioORE.
稀土元素的生物地球化学、生物提取和生物回收 - BioORE。
- 批准号:
NE/L002248/1 - 财政年份:2013
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant
Biogeochemistry, Bioextraction and Biorecovery of Rare Earth Elements.
稀土元素的生物地球化学、生物提取和生物回收。
- 批准号:
NE/L002213/1 - 财政年份:2013
- 资助金额:
$ 8.96万 - 项目类别:
Research Grant