Solid state NMR for dynamics and kinetics of hydrogen uptake and transport in novel bionanomaterials for energy applications ('Nano-NMR')
用于能源应用的新型生物纳米材料中氢吸收和传输的动力学和动力学的固态核磁共振(“纳米核磁共振”)
基本信息
- 批准号:EP/F027133/1
- 负责人:
- 金额:$ 15.29万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Stern report stresses that we must move rapidly to the use of sustainable energy. The move into the hydrogen economy is still 10-20 years away. This is desperately limited by four major issues: (i) current fuel cells that use hydrogen require precious metal electrodes which are very expensive and the catalyst life, and high expense, limit fuel cell economics; (ii) better hydrogen stores are needed to obtain the 7% H by mass needed for commercial viability (metal hydride based stores are simply too heavy); (iii) not only the H mass in the store, but also the kinetics of H uptake and release are vitally important; (iv) we do not yet have the technology to measure and follow the speciation and transport of hydrogen within solid matrices or, indeed, the capability to understand what is happening within the structure of the material as it interacts with hydrogen. This feasibility study brings together world class expertise across 2 universities that are developing closer research collaborations to address these problems (prior to maturation of a full grant proposal following this one) within an extant framework of academic and industrial collaboration, embedded within within two major investments: by the DTI (6.3m for infrastructure) and by EPSRC (1.5m for H-supply chain research using extant materials). This feasibility study, and its follow-up full project, will sit within this framework, against a raft of ~ 20 collaborating companies, the whole programme being managed by a full time project manager currently in post, funded by University of Birmingham.Within the feasibility study we will use a completely novel method: bacterial biomanufacturing of precious metal nanomaterials, bottom up, atom by atom, with runaway crystal growth and nanoparticle agglomeration (which limits commercial synthesis) controlled by the scaffolding function of the bacterial cell surface. Such bionanomaterials are suggested (April 07 Biotechnol Letts) to be potentially superior to commercial fuel cell catalysts; they are comparably active (Bio-Pt) or have totally unexpected activity (Bio-Pd) and biomanufacturing is highly scaleable to kilo/tonnage-scale. Pd/Au bionanohybrids are recently shown; this is current 'state of the art' in fuel cells where Au(0) is incorporated into bimetallics to oxidise poisonous CO in situ. We will construct and test PEM fuel cells with biometals and bio-bimetallic hybrids, asking WHY these are so active (versus commercial materials) using as tools EPR, SQUID, XRD, FTIR and synchrotron methods, as well as solid-sate NMR (1H and 2H) to follow specifically hydrogen transport and speciation within the metallic lattices. We will also start to develop solid state NMR of the palladium nucleus itself, to gain novel insight into the Pd-H 'dialogue' at the grain boundaries/dislocations in situ which has been beyond reach until now by the lack of methodology. The problem of hydrogen stores will be tackled by adopting potential lightweight carbon storage materials (activated carbon particles and milled graphite; they have poor H-kinetics), overlaying these with a palladium thin film. Pd(0), uniquely, dissociates H2 and moves hydrogen around as highly reactive free H-atoms. We will use the ability of bacteria to colonise and swim over all surfaces, even occluded nooks and crannies. The bacteria will then be palladised and dried to leave a nano-Pd(0)-all-over-film. This will combine the excellent H-transfer and H-conduction properties of Pd(0) (only a few atoms thick is needed) with the ability to bio-direct a Pd-film (controlled size/distribution) which contrbutes little to the overall weight. Transfer of H atoms into the Pd(0)/across the Pd/C boundary layer and into the carbon, will be followed using solid state 1H and 2H NMR to follow the 'dialogue' between the two materials, and ascertain what is happening (and how fast) as the H delivered by the Pd(0) as individual atoms, goes into the carbon matrix for storage.
斯特恩报告强调,我们必须迅速转向使用可持续能源。进入氢经济还需要10-20年的时间。这受到四个主要问题的严重限制:(i)目前使用氢的燃料电池需要非常昂贵的贵金属电极,并且催化剂寿命和高费用限制了燃料电池的经济性;(ii)需要更好的氢储存以获得商业可行性所需的按质量计7%的H(iii)不仅氢在贮器中的质量,而且氢吸收和释放的动力学也是至关重要的;(iv)我们尚没有技术去量度和追踪氢在固体基质内的形态和迁移,或确实有能力去了解当物质与氢相互作用时,在物质结构内发生了什么。这项可行性研究汇集了两所大学的世界级专业知识,这些大学正在开展更密切的研究合作,以解决这些问题(在此之后的完整赠款提案成熟之前)在现有的学术和工业合作框架内,嵌入两项主要投资:DTI(6.3米用于基础设施)和EPSRC(1.5米用于使用现有材料的H-供应链研究)。该可行性研究及其后续完整项目将在此框架内进行,与约20家合作公司进行合作,整个项目由伯明翰大学资助的全职项目经理管理。在可行性研究中,我们将使用一种全新的方法:贵金属纳米材料的细菌生物制造,自下而上,一个原子一个原子,伴随着失控的晶体生长和纳米颗粒团聚(这限制了商业合成)由细菌细胞表面的支架功能控制。这种生物纳米材料被认为(2007年4月Biotechnol Ltd.)可能上级商业燃料电池催化剂;它们具有生物活性(Bio-Pt)或具有完全出乎意料的活性(Bio-Pd),并且生物制造高度可扩展到千吨级。最近显示了Pd/Au生物纳米杂化物;这是燃料电池中的当前“最新技术”,其中Au(0)被并入双金属中以原位氧化有毒的CO。我们将构建和测试PEM燃料电池与生物金属和生物燃料混合物,问为什么这些是如此活跃(相对于商业材料)作为工具EPR,SQUID,XRD,FTIR和同步加速器方法,以及固态NMR(1H和2 H),以遵循具体的氢运输和金属晶格内的物种形成。我们还将开始开发钯核本身的固态NMR,以获得对Pd-H在晶界/位错原位“对话”的新见解,这是迄今为止由于缺乏方法而无法实现的。氢存储的问题将通过采用潜在的轻质碳存储材料(活性炭颗粒和研磨石墨;它们具有差的H动力学)来解决,用钯薄膜覆盖它们。Pd(0)独特地使H2解离并使氢作为高活性自由H原子四处移动。我们将利用细菌的能力,在所有的表面,甚至是封闭的角落和缝隙中繁殖和游动。然后将细菌钯化并干燥以留下纳米Pd(0)-全膜。这将联合收割机结合Pd(0)的优异的H-转移和H-传导性质(仅需要几个原子厚)与生物导向Pd-膜的能力(受控的尺寸/分布),其对总重量贡献很小。将使用固态1H和2 H NMR跟踪H原子进入Pd(0)/穿过Pd/C边界层并进入碳,以跟踪两种材料之间的“对话”,并确定当由Pd(0)作为单个原子递送的H进入碳基质进行储存时发生了什么(以及多快)。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Heat-treated biomineralised palladium is an effective hydrogenation catalyst
热处理生物矿化钯是一种有效的加氢催化剂
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:I Mikheenko
- 通讯作者:I Mikheenko
Manufacturing of fuel cell catalysts by bio-crystallization
通过生物结晶制造燃料电池催化剂
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:4.1
- 作者:P Yong
- 通讯作者:P Yong
Biorecovery of Precious Metals from Wastes and Conversion into Fuel Cell Catalyst for Electricity Production
- DOI:10.4028/www.scientific.net/amr.71-73.729
- 发表时间:2009-05
- 期刊:
- 影响因子:0
- 作者:P. Yong;I. Mikheenko;K. Deplanche;F. Sargent;L. Macaskie
- 通讯作者:P. Yong;I. Mikheenko;K. Deplanche;F. Sargent;L. Macaskie
Electron Paramagnetic Resonance Analysis of Active Bio-Pd-Based Electrodes for Fuel Cells
燃料电池活性生物钯基电极的电子顺磁共振分析
- DOI:10.4028/www.scientific.net/amr.71-73.737
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Pinto De Carvalho R
- 通讯作者:Pinto De Carvalho R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lynne Macaskie其他文献
Lynne Macaskie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lynne Macaskie', 18)}}的其他基金
Towards circularity: Upconversion of biowaste from primary bioprocess into two high value product streams
迈向循环:将生物废物从初级生物过程向上转化为两种高价值产品流
- 批准号:
BB/T010118/1 - 财政年份:2019
- 资助金额:
$ 15.29万 - 项目类别:
Research Grant
Biogenic metal phosphates: Low cost, high capacity, stable 'lockups' for the removal of radionuclides from groundwater and decontamination solutions
生物金属磷酸盐:低成本、高容量、稳定的“锁定”,用于去除地下水和净化溶液中的放射性核素
- 批准号:
NE/L012537/1 - 财政年份:2014
- 资助金额:
$ 15.29万 - 项目类别:
Research Grant
Beyond biorecovery: environmental win-win by biorefining of metallic wastes into new functional materials (B3)
超越生物回收:通过将金属废物生物精炼成新型功能材料实现环境双赢(B3)
- 批准号:
NE/L014076/1 - 财政年份:2014
- 资助金额:
$ 15.29万 - 项目类别:
Research Grant
Biogeochemistry, Bioextraction and Biorecovery of Rare Earth Elements.
稀土元素的生物地球化学、生物提取和生物回收。
- 批准号:
NE/L002256/1 - 财政年份:2013
- 资助金额:
$ 15.29万 - 项目类别:
Research Grant
Beyond Biorecovery: environmental win-win by biorefining of metallic wastes into new functional materials
超越生物回收:将金属废物生物精炼成新型功能材料,实现环境双赢
- 批准号:
NE/K015664/1 - 财政年份:2013
- 资助金额:
$ 15.29万 - 项目类别:
Research Grant
Applying muon spin rotation to understand the magnetic behaviour of metallic bionanoparticles
应用μ子自旋旋转来了解金属生物纳米颗粒的磁性行为
- 批准号:
EP/J006483/1 - 财政年份:2011
- 资助金额:
$ 15.29万 - 项目类别:
Research Grant
Novel precious metal nanocatalyst made by biofabrication
生物制造的新型贵金属纳米催化剂
- 批准号:
EP/H029567/1 - 财政年份:2010
- 资助金额:
$ 15.29万 - 项目类别:
Research Grant
Photonic solutions for solar bioenergy
太阳能生物能源的光子解决方案
- 批准号:
G0902337/1 - 财政年份:2010
- 资助金额:
$ 15.29万 - 项目类别:
Research Grant
Functional bionanomaterials and novel processing for targeted catalytic applications
用于目标催化应用的功能性生物纳米材料和新颖加工
- 批准号:
EP/D05768X/1 - 财政年份:2007
- 资助金额:
$ 15.29万 - 项目类别:
Research Grant
Novel MR Selective Imaging of Transport and Growth in Biofilms
生物膜运输和生长的新型 MR 选择性成像
- 批准号:
EP/E012213/1 - 财政年份:2007
- 资助金额:
$ 15.29万 - 项目类别:
Research Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
- 批准号:61701437
- 批准年份:2017
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
超导量子器件中关于量子计算、电路量子电动力学和退相干的研究
- 批准号:11174248
- 批准年份:2011
- 资助金额:75.0 万元
- 项目类别:面上项目
拓扑绝缘体中的强关联现象
- 批准号:11047126
- 批准年份:2010
- 资助金额:4.0 万元
- 项目类别:专项基金项目
分子高振动-转动激发态结构中的复杂相互作用
- 批准号:11074204
- 批准年份:2010
- 资助金额:38.0 万元
- 项目类别:面上项目
以硫氧还蛋白还原酶为靶点的化学生物学研究
- 批准号:21002047
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
激光催化下的旋量凝聚原子:自旋混合与共振拍
- 批准号:10974045
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
基于SSD的大规模元数据处理技术研究
- 批准号:60970025
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
李超代数的表示和仿射李代数的VCS表示及双代数结构
- 批准号:10901028
- 批准年份:2009
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
- 批准号:
EP/Z532836/1 - 财政年份:2024
- 资助金额:
$ 15.29万 - 项目类别:
Research Grant
Mechanism and Structure of Functional Materials by Solid-state NMR
通过固态核磁共振研究功能材料的机理和结构
- 批准号:
EP/X041751/1 - 财政年份:2024
- 资助金额:
$ 15.29万 - 项目类别:
Fellowship
The UK High-Field Solid-State NMR National Research Facility: EPSRC Core Equipment Award 2022
英国高场固态核磁共振国家研究设施:2022 年 EPSRC 核心设备奖
- 批准号:
EP/X03481X/1 - 财政年份:2023
- 资助金额:
$ 15.29万 - 项目类别:
Research Grant
Structural Studies of Proteins by Paramagnetic Solid-State NMR Spectroscopy
通过顺磁固态核磁共振波谱法研究蛋白质的结构
- 批准号:
2303862 - 财政年份:2023
- 资助金额:
$ 15.29万 - 项目类别:
Standard Grant
500 MHz Solid State NMR Spectrometer
500 MHz 固态核磁共振波谱仪
- 批准号:
524658450 - 财政年份:2023
- 资助金额:
$ 15.29万 - 项目类别:
Major Research Instrumentation
MRI: Track 1 Acquisition of a 500 MHz solid/liquid-state NMR to Expand Interdisciplinary Research and Education at Howard University
MRI:第一轨道采购 500 MHz 固态/液态 NMR 以扩大霍华德大学的跨学科研究和教育
- 批准号:
2320489 - 财政年份:2023
- 资助金额:
$ 15.29万 - 项目类别:
Standard Grant
Replacement procurement: 200 MHz Solid-State NMR Spectrometer
更换采购:200 MHz 固态核磁共振波谱仪
- 批准号:
530325402 - 财政年份:2023
- 资助金额:
$ 15.29万 - 项目类别:
Major Research Instrumentation
Console solid-state NMR 400 MHz
控制台固态 NMR 400 MHz
- 批准号:
527030253 - 财政年份:2023
- 资助金额:
$ 15.29万 - 项目类别:
Major Research Instrumentation
Revealing the Cell Wall Organization of Fungal Pathogens and Structural Responses to Antifungal Drugs Using Cellular Solid-State NMR
使用细胞固态核磁共振揭示真菌病原体的细胞壁组织和抗真菌药物的结构反应
- 批准号:
10566511 - 财政年份:2023
- 资助金额:
$ 15.29万 - 项目类别:
Structural Biology and Biophysics of Alpha-Synuclein Fibrils by Solid-State NMR
通过固态核磁共振研究 α-突触核蛋白原纤维的结构生物学和生物物理学
- 批准号:
10605819 - 财政年份:2023
- 资助金额:
$ 15.29万 - 项目类别: