Using Optimisation Algorithms to tune Climate Models (OptClim)
使用优化算法调整气候模型 (OptClim)
基本信息
- 批准号:NE/L012146/1
- 负责人:
- 金额:$ 19.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
OptCliM will bring into climate modelling advances from mathematical optimization research. Our focus is upon parameterised processes that represent physics that are unresolved within climate models. These unresolved processes are represented through equations that include fixed parameters, with a typical climate model having around a hundred parameters. For example, thunderstorms not only generate heavy rain but are also one route for moisture into the atmosphere. One of the parameters expresses the rate at which moist air in the storm is mixed into the atmosphere. A range of values for each parameter is consistent with theory and measurement with changes in some parameters having a dramatic effect on future climate predictions. It is therefore necessary to have realistic parameter values in order to adequately model past or future climates. OptCliM responds to the need for an automatic and objective method to produce models consistent with reality. Currently the values used in climate models are chosen by manually adjusting several of them until the model produces an acceptable simulation of the current average climate. This process is very expensive in person time; it is not objective, not reproducible, and relies heavily on individual, if expert, judgement. OptCliM will develop iterative methods that use optimisation algorithms to automatically adjust many parameters so that models are consistent with observations. Beginning from any set of parameter values within the allowed ranges, the optimisation algorithm determines an initial set of model configurations to be run. On completion of these runs, the simulations are compared against the observations, and used to define parameter values for further runs until progress halts or the difference between simulation and observations are small. The challenges in applying such methods to climate models arise from the inherent noisiness of climate, and the computational expense of each model run. We will bring into climate modelling three alternative algorithms to find which is most effective in terms of making a model consistent with a range of different observations, and achieving that goal with minimum computing time and cost.OptCliM will:1) Allow researchers to more easily generate parameter sets that produce realistic models allowing a better understanding of past and future climate change. 2) Provide an objective and transparent method to combine models and specified observations. 3) Through our impact plan contribute to the development of the new UK earth system model, UKESM1.4) Open further development of methods for a more systematic exploration of uncertainty in climate modelling, for example generating parameter value sets that sample observational uncertainty to lead to a cloud of plausible models.
OptCliM将从数学优化研究中带来气候建模的进步。我们的重点是参数化的过程,这些过程代表了气候模型中未解决的物理问题。这些未解决的过程通过包含固定参数的方程来表示,典型的气候模式有大约一百个参数。例如,雷暴不仅产生大雨,而且也是水分进入大气的一条途径。其中一个参数表示风暴中的湿空气混合到大气中的速率。每个参数的数值范围与理论和测量结果一致,有些参数的变化对未来气候预测有巨大影响。因此,有必要有现实的参数值,以充分模拟过去或未来的气候。OptCliM响应了对自动和客观方法的需求,以产生与现实一致的模型。目前,气候模式中使用的数值是通过手动调整其中几个数值来选择的,直到模式对当前平均气候进行了可接受的模拟。这一过程的人力成本非常高;它不客观,不可复制,严重依赖个人(如果是专家的话)的判断。OptCliM将开发迭代方法,使用优化算法自动调整许多参数,使模型与观测结果一致。从允许范围内的任何一组参数值开始,优化算法确定要运行的一组初始模型配置。在完成这些运行时,将模拟与观察进行比较,并用于定义进一步运行的参数值,直到进度停止或模拟与观察之间的差异很小。将这种方法应用于气候模型的挑战来自于气候固有的噪音,以及每个模型运行的计算费用。我们将在气候建模中引入三种替代算法,以找出哪种算法最有效,使模型与一系列不同的观测结果保持一致,并以最少的计算时间和成本实现这一目标。OptCliM将:1)使研究人员能够更容易地生成参数集,从而生成逼真的模型,从而更好地了解过去和未来的气候变化。2)提供一个客观和透明的方法来结合联合收割机模型和指定的观察。3)通过我们的影响计划,为开发新的英国地球系统模型(UKESM)做出贡献1.4)开放进一步开发方法,以便更系统地探索气候建模中的不确定性,例如生成参数值集,对观测不确定性进行采样,从而产生一系列合理的模型。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Calibrating Climate Models – what observations matter?
校准气候模型
- DOI:10.5194/egusphere-egu22-7895
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Tett S
- 通讯作者:Tett S
Automated parameter tuning applied to sea ice in a global climate model
- DOI:10.1007/s00382-017-3581-5
- 发表时间:2017
- 期刊:
- 影响因子:4.6
- 作者:L. Roach;S. Tett;M. Mineter;K. Yamazaki;C. Rae
- 通讯作者:L. Roach;S. Tett;M. Mineter;K. Yamazaki;C. Rae
A derivative-free optimisation method for global ocean biogeochemical models
全球海洋生物地球化学模型的无导数优化方法
- DOI:10.5194/gmd-2021-175
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Oliver S
- 通讯作者:Oliver S
Does Model Calibration Reduce Uncertainty in Climate Projections?
模型校准是否会降低气候预测的不确定性?
- DOI:10.1175/jcli-d-21-0434.1
- 发表时间:2022
- 期刊:
- 影响因子:4.9
- 作者:Tett S
- 通讯作者:Tett S
Adaptive regularization with cubics on manifolds
- DOI:10.1007/s10107-020-01505-1
- 发表时间:2018-05
- 期刊:
- 影响因子:2.7
- 作者:Naman Agarwal;Nicolas Boumal;Brian Bullins;C. Cartis
- 通讯作者:Naman Agarwal;Nicolas Boumal;Brian Bullins;C. Cartis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Tett其他文献
Simon Tett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Tett', 18)}}的其他基金
Metrics for Emissions Removal Limits for Nature
自然排放清除限值指标
- 批准号:
NE/P019749/1 - 财政年份:2017
- 资助金额:
$ 19.26万 - 项目类别:
Research Grant
Playing Games to Understand Multiple Hazards and Risk from Climate Change on Interdependent Infrastructure.
通过玩游戏来了解气候变化对相互依赖的基础设施造成的多种危害和风险。
- 批准号:
NE/R009023/1 - 财政年份:2017
- 资助金额:
$ 19.26万 - 项目类别:
Research Grant
ICE-IMPACT: International Consortium for the Exploitation of Infrared Measurements of PolAr ClimaTe
ICE-IMPACT:国际极地气候红外测量开发联盟
- 批准号:
NE/N013786/1 - 财政年份:2016
- 资助金额:
$ 19.26万 - 项目类别:
Research Grant
What are the roles of natural and human drivers in historical changes in the Atlantic Meridional Circulation?
自然和人类驱动因素在大西洋经向环流的历史变化中发挥什么作用?
- 批准号:
NE/G007861/1 - 财政年份:2009
- 资助金额:
$ 19.26万 - 项目类别:
Research Grant
相似海外基金
Robust Derivative-Free Algorithms for Complex Optimisation Problems
用于复杂优化问题的鲁棒无导数算法
- 批准号:
DE240100006 - 财政年份:2024
- 资助金额:
$ 19.26万 - 项目类别:
Discovery Early Career Researcher Award
AI innovation in the supply chain of consumer packaged-goods for recognising objects in retail execution, supply chain management and smart factories: using novel diffusion-based optimisation algorithms and diffusion-based generative models
消费包装商品供应链中的人工智能创新,用于识别零售执行、供应链管理和智能工厂中的对象:使用新颖的基于扩散的优化算法和基于扩散的生成模型
- 批准号:
10081810 - 财政年份:2023
- 资助金额:
$ 19.26万 - 项目类别:
Collaborative R&D
New proximal algorithms for computational imaging: From optimisation theory to enhanced deep learning
计算成像的新近端算法:从优化理论到增强型深度学习
- 批准号:
EP/X028860/1 - 财政年份:2023
- 资助金额:
$ 19.26万 - 项目类别:
Research Grant
Advancing understanding of the evolution of key bacterial and fungal genes in microbial communities through metagenomic assembly optimisation and context-aware graph algorithms
通过宏基因组组装优化和上下文感知图算法加深对微生物群落中关键细菌和真菌基因进化的理解
- 批准号:
RGPIN-2022-03341 - 财政年份:2022
- 资助金额:
$ 19.26万 - 项目类别:
Discovery Grants Program - Individual
Advancing understanding of the evolution of key bacterial and fungal genes in microbial communities through metagenomic assembly optimisation and context-aware graph algorithms
通过宏基因组组装优化和上下文感知图算法加深对微生物群落中关键细菌和真菌基因进化的理解
- 批准号:
DGECR-2022-00327 - 财政年份:2022
- 资助金额:
$ 19.26万 - 项目类别:
Discovery Launch Supplement
Design and optimisation of metasurface materials using AI/machine learning algorithms
使用人工智能/机器学习算法设计和优化超表面材料
- 批准号:
2751285 - 财政年份:2022
- 资助金额:
$ 19.26万 - 项目类别:
Studentship
Nonmonotone Algorithms in Operator Splitting, Optimisation and Data Science
算子分裂、优化和数据科学中的非单调算法
- 批准号:
DE200100063 - 财政年份:2020
- 资助金额:
$ 19.26万 - 项目类别:
Discovery Early Career Researcher Award
Creating a human-centered interface between engineers and genetic optimisation algorithms
在工程师和遗传优化算法之间创建以人为本的界面
- 批准号:
2284858 - 财政年份:2019
- 资助金额:
$ 19.26万 - 项目类别:
Studentship
Developing Quantum Optimisation Algorithms
开发量子优化算法
- 批准号:
2284239 - 财政年份:2019
- 资助金额:
$ 19.26万 - 项目类别:
Studentship
Efficient second-order optimisation algorithms for learning from big data
用于从大数据中学习的高效二阶优化算法
- 批准号:
DE180100923 - 财政年份:2018
- 资助金额:
$ 19.26万 - 项目类别:
Discovery Early Career Researcher Award