New image analysis technologies for fast and accurate retrieval of sea ice floe size distribution (FSD) from satellite SAR imagery

新的图像分析技术可从卫星 SAR 图像中快速准确地检索海冰浮冰尺寸分布 (FSD)

基本信息

  • 批准号:
    NE/L012707/1
  • 负责人:
  • 金额:
    $ 13.87万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Arctic sea ice is changing rapidly. The most profound example is during the summer of 2012, in which the lowest ice extent was recorded since satellite sensors began to monitor sea ice in 1979. Within just one week, as a violent storm passed the Arctic in August of 2012, sea ice area equivalent to nearly twice the size of UK (0.4 million square kilometres) disappeared, leaving ice-free water up to 80 N by mid-August in western Arctic. One of the key processes that cause such rapid sea ice decline is sea-ice floe breakup during the winter-to-summer transition. During this transition the edge of sea ice retreats to the north, exposing larger open water fetch to generate waves, propagating into the ice pack, allowing larger sea-ice floes to break into smaller ones. As the floes become smaller, they melt faster and become more dynamic. At the same time more solar radiation is absorbed through exposed open water areas, which makes the upper ocean layer warmer and in turn promotes faster ice melting. This chain reaction can accelerate the sea ice retreat and thus impact the minimum ice extent. This important floe breakup and associated effects are poorly implemented in sea-ice/climate models. This is partly due to lack of understanding and verification of our current knowledge on the processes as well as due to complexity of the processes that makes it difficult to effectively implement them into "simple" representations in the models. Producing effective parameterisations requires accurate data on in-situ floe size distribution (FSD) that can be used to verify and refine the known parameterisations as well as to formulate new ones. Satellite Synthetic Aperture Radar (SAR) provides observations of sea ice unhindered by either darkness or cloud, thus provide ideal raw data from which FSD can be retrieved from dark winter to cloudy summer in the Arctic. There is an increasing number of satellite SAR images being acquired in the Arctic, and often at spatial resolutions in the images as good as 1-20 m. More importantly satellite SAR images are being acquired over autonomous buoy systems and in conjunction with field campaigns. This provides the ideal framework to measure the full range of ocean, sea-ice and atmosphere parameters to investigate complex floe breakup process. However the challenge we have is a lack of proven-quality algorithms that can derive FSD from satellite SAR images fast and accurately. Thresholding algorithms previously applied to the problem are not adequate for quantitative analysis and the performance has not been precisely assessed. In this project we, for the first time, combine sea ice physics with edge-cutting image processing techniques to develop FSD algorithms at a completely different level. We leverage the latest image processing technologies which include a) wavelet algorithms to reduce the speckle noise while increasing the contrast of the boundary between ice and water, b) local-statistics based algorithm to extract ice floe features from the background open water, c) and a combination of edge-preserving watershed and split-and-merge algorithms to effectively split up the touching boundary of the floes. We expect this set of new algorithms will produce much more accurate FSD from satellite SAR images, and lay a foundation develop universal algorithm that can be used to build a long-term sea-ice FSD database.
北冰洋海冰正在迅速变化。最深刻的例子是在2012年夏天,自1979年卫星传感器开始监测海冰以来,冰层面积创下了最低纪录。2012年8月,随着一场猛烈的风暴席卷北极,短短一周内,相当于英国面积(40万平方公里)近两倍的海冰面积消失,到8月中旬,北极西部的无冰水域达到了80北纬。造成海冰如此迅速减少的关键过程之一是冬季向夏季过渡期间海冰的破裂。在这一过渡期间,海冰的边缘向北后退,暴露出更大的开放水域以产生波浪,传播到冰层中,使较大的海冰分裂成较小的浮冰。随着浮冰变得更小,它们融化得更快,变得更具活力。与此同时,更多的太阳辐射通过裸露的开阔水域被吸收,这使得上层海洋变暖,反过来又促进了冰的更快融化。这种连锁反应会加速海冰的退缩,从而影响到最小的冰范围。这一重要的浮冰破裂及其相关效应在海冰/气候模型中没有得到很好的实施。这在一定程度上是由于缺乏对我们目前关于流程的知识的理解和验证,以及由于流程的复杂性,使得很难将其有效地实现为模型中的“简单”表示。产生有效的参数化需要关于现场浮体大小分布(FSD)的准确数据,这些数据可用于验证和改进已知的参数化以及制定新的参数化。卫星合成孔径雷达(SAR)提供了不受黑暗或云层阻碍的海冰观测,从而为从北极黑冬到多云的夏季反演海冰提供了理想的原始数据。在北极正在获取越来越多的卫星合成孔径雷达图像,图像的空间分辨率往往高达1-20米。更重要的是,正在通过自主浮标系统并结合实地行动获取卫星合成孔径雷达图像。这提供了一个理想的框架来测量海洋、海冰和大气的各种参数,以研究复杂的浮冰破裂过程。然而,我们面临的挑战是,缺乏能够快速、准确地从卫星SAR图像中提取FSD的经过验证的质量算法。以前应用于该问题的阈值算法不足以进行定量分析,并且其性能没有得到准确的评估。在这个项目中,我们首次将海冰物理与边缘切割图像处理技术相结合,在一个完全不同的水平上开发FSD算法。我们利用最新的图像处理技术,包括a)小波算法在降低斑点噪声的同时增加冰水边界的对比度,b)基于局部统计的算法从背景开阔水域提取浮冰特征,c)结合边缘保持分水岭和分裂合并算法有效地分割浮冰的接触边界。我们期待这套新的算法能够从卫星SAR图像中产生更精确的FSD,并为开发可用于建立长期海冰FSD数据库的通用算法奠定基础。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling the seasonal evolution of the Arctic sea ice floe size distribution
  • DOI:
    10.12952/journal.elementa.000126
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinlun Zhang;H. Stern;B. Hwang;A. Schweiger;M. Steele;M. Stark;H. Graber
  • 通讯作者:
    Jinlun Zhang;H. Stern;B. Hwang;A. Schweiger;M. Steele;M. Stark;H. Graber
SAR Sea Ice Image Segmentation Using Watershed with Intensity-Based Region Merging
Evolution of a Canada Basin ice-ocean boundary layer and mixed layer across a developing thermodynamically forced marginal ice zone
  • DOI:
    10.1002/2016jc011778
  • 发表时间:
    2016-08-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Gallaher, Shawn G.;Stanton, Timothy P.;Hwang, Byongjun
  • 通讯作者:
    Hwang, Byongjun
Radar backscattering changes in Arctic sea ice from late summer to early autumn observed by space-borne X-band HH-polarization SAR
  • DOI:
    10.1080/2150704x.2016.1165881
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Jeong-Won Park;Hyun‐cheol Kim;Sang‐Hoon Hong;Sung-Ho Kang;H. Graber;B. Hwang;Craig M. Lee
  • 通讯作者:
    Jeong-Won Park;Hyun‐cheol Kim;Sang‐Hoon Hong;Sung-Ho Kang;H. Graber;B. Hwang;Craig M. Lee
Effective SAR sea ice image segmentation and touch floe separation using a combined multi-stage approach
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Byongjun Hwang其他文献

Byongjun Hwang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Byongjun Hwang', 18)}}的其他基金

MOSAiC: Floe-scale observation and quantification of Arctic sea ice breakup and floe size during the autumn-to-summer transition (MOSAiCFSD)
MOSAiC:秋夏季过渡期间北极海冰破裂和浮冰尺寸的浮冰规模观测和量化(MOSAiCFSD)
  • 批准号:
    NE/S002545/1
  • 财政年份:
    2018
  • 资助金额:
    $ 13.87万
  • 项目类别:
    Research Grant
Enhancing international collaborations for the retrieval of sea ice floe size distribution (FSD) from satellite SAR imagery
加强从卫星 SAR 图像中检索海冰浮冰尺寸分布 (FSD) 的国际合作
  • 批准号:
    NE/M00600X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 13.87万
  • 项目类别:
    Research Grant

相似国自然基金

基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
  • 批准号:
    41904148
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
面向英汉双向跨语言图像检索的文本分析关键技术研究
  • 批准号:
    61170095
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Raw-Image微小物体高精度位姿测量法
  • 批准号:
    61105029
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
关于图像处理模型的目标函数构造及其数值方法研究
  • 批准号:
    11071228
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
双星中性原子探测图像在地磁暴期间的时序演化过程反演分析
  • 批准号:
    40974100
  • 批准年份:
    2009
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
微复型过程中聚合物流动填充机理的可视化实验分析
  • 批准号:
    50975227
  • 批准年份:
    2009
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
基于图像的Visuall Hull的立体感实时绘制及其高速图形处理硬件(GPU)的实现机制
  • 批准号:
    60573149
  • 批准年份:
    2005
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目
分数阶傅里叶变换多分量图像数字水印研究
  • 批准号:
    60472044
  • 批准年份:
    2004
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidating the Role of Endothelial Dysfunction in Alzheimer Disease: Towards A New Data-Driven Disease Model
阐明内皮功能障碍在阿尔茨海默病中的作用:建立新的数据驱动疾病模型
  • 批准号:
    10737969
  • 财政年份:
    2023
  • 资助金额:
    $ 13.87万
  • 项目类别:
Supplement to Support the Development of a New Multiplexed Imaging Tool using Raman Spectroscopy for Breast Cancer
支持开发使用拉曼光谱治疗乳腺癌的新型多重成像工具的补充材料
  • 批准号:
    10839117
  • 财政年份:
    2023
  • 资助金额:
    $ 13.87万
  • 项目类别:
Prohibiting Cell Death in Human Keratocytes: New Insights for Non-surgical Keratoconus Treatment
抑制人角膜细胞的细胞死亡:非手术圆锥角膜治疗的新见解
  • 批准号:
    10720431
  • 财政年份:
    2023
  • 资助金额:
    $ 13.87万
  • 项目类别:
ERI: A New Spatial Image Analysis of the Tumor Microenvironment for Cancer Immunotherapy
ERI:用于癌症免疫治疗的肿瘤微环境的新空间图像分析
  • 批准号:
    2409705
  • 财政年份:
    2023
  • 资助金额:
    $ 13.87万
  • 项目类别:
    Standard Grant
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
  • 批准号:
    23K19795
  • 财政年份:
    2023
  • 资助金额:
    $ 13.87万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
A New Multimodal Molecular Imaging Approach to Guide Intra-Operative Tumor Resection and Post-Operative Treatment Planning
一种新的多模态分子成像方法来指导术中肿瘤切除和术后治疗计划
  • 批准号:
    10578468
  • 财政年份:
    2023
  • 资助金额:
    $ 13.87万
  • 项目类别:
Traditional and New Dietary Assessment Methods (TANDAM) for Personalized Nutrition
个性化营养的传统和新膳食评估方法(TANDAM)
  • 批准号:
    10875251
  • 财政年份:
    2023
  • 资助金额:
    $ 13.87万
  • 项目类别:
Developing a new chordate model for stem cell biology and regeneration
开发用于干细胞生物学和再生的新脊索动物模型
  • 批准号:
    10373777
  • 财政年份:
    2022
  • 资助金额:
    $ 13.87万
  • 项目类别:
Developing a new chordate model for stem cell biology and regeneration
开发用于干细胞生物学和再生的新脊索动物模型
  • 批准号:
    10580589
  • 财政年份:
    2022
  • 资助金额:
    $ 13.87万
  • 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
  • 批准号:
    10601180
  • 财政年份:
    2022
  • 资助金额:
    $ 13.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了