Genomic prediction in a wild mammal

野生哺乳动物的基因组预测

基本信息

  • 批准号:
    NE/M002896/1
  • 负责人:
  • 金额:
    $ 41.27万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Imagine a world where a scientist could sample an animal or plant and, by DNA profiling, predict what it would look like, how long it would live, how many offspring it would have, and whether or not it would out-compete other members of its population. Although the idea seems fanciful, it has become a possibility, even for wild populations within complex ecological systems. The aim of this proposal is to develop, test and apply so called 'genomic prediction' methods for use in evolutionary ecology.In the last decade remarkable advances in genomics methods, most notably next-generation sequencing, have revolutionised all areas of biological research. It is now possible to generate DNA profiles at hundreds of thousands of variable sites across the genome, in any organism. Many of these sites (known as single nucleotide polymorphisms, or SNPs) will reside within, or very close to, genes that cause phenotypic variation. Traditionally, the search for these genes, or quantitative trait loci (QTL), has involved testing each SNP individually and then identifying those which are statistically significant. However, this approach is problematic, in that it is biased towards finding genes of large effect, which for many phenotypes simply do not exist. If, as is more common, there are many genes of small effect then QTL will remain undetected. In animal and plant breeding, the problem has been solved by considering the phenotypic effect of all SNPs simultaneously. First a 'training population' of genotyped samples with known phenotype are used to estimate effect sizes of each SNP. Then a second sample of 'test' individuals is genotyped, and the genotypes are used to predict phenotype; i.e. perform genomic prediction. This approach underpins successful modern artificial selection programmes and is set to be used in personalised medicine. However, genomic prediction has never been applied to wild populations, despite its potential to revolutionise evolutionary ecological genetics.We will test and apply genomic prediction in the feral population of Soay sheep on the island of Hirta (St Kilda, Scotland); one of the most intensively studied vertebrate populations in the world. Since 1985, over 95% of animals born in the Village Bay study area have been monitored over their entire lifetimes, such that detailed life histories (e.g. date of birth, date of death, sex, twin status, morphological measurements, immunological assays, parasite loads and lifetime fitness) are described for over 7000 sheep. Many traits have been measured numerous times across development. Furthermore, the sheep genome has been sequenced and most of the Soay study population has been typed at 38K SNPs discovered by the International Sheep Genomics Consortium. Additional features that make Soay sheep the ideal system for testing genomic prediction are: (i) different traits have well described and very different genetic architectures. eg. coat colour and horn type have a simple genetic basis while skeletal measurements are far more polygenic (but still highly heritable) and (ii) linkage disequilibrium extends for long distances in the genome, so that the SNPs on the chip 'tag' most of the genome. Using a 'training population' of all animals born until 2010 we will estimate the effects of individual SNPs, and then use these estimates to predict the phenotype of animals born after 2010. We will compare the predictions to observed values; the first time genomic prediction has been tested or applied in a wild population. We will also use genomic predictions to establish which traits have made an evolutionary response to natural selection.We predict that genomic prediction will be achievable in our study population and that it will outperform traditional pedigree-based approaches to studying micro-evolution in nature.
想象一下这样一个世界,科学家可以对一种动物或植物进行采样,通过DNA分析,预测它的样子,它能活多久,它能有多少后代,以及它是否会在竞争中超过种群中的其他成员。虽然这个想法似乎是幻想,但它已经成为一种可能性,即使是对复杂生态系统中的野生种群也是如此。该计划的目的是开发、测试和应用所谓的“基因组预测”方法,用于进化生态学。在过去的十年中,基因组学方法的显著进步,尤其是下一代测序,已经彻底改变了生物学研究的所有领域。现在可以在任何生物体的基因组中产生数十万个可变位点的DNA图谱。这些位点(称为单核苷酸多态性或SNP)中的许多位点将位于引起表型变异的基因内或非常接近。传统上,寻找这些基因或数量性状基因座(QTL),涉及单独测试每个SNP,然后识别那些具有统计学意义的SNP。然而,这种方法是有问题的,因为它偏向于寻找大作用的基因,而对于许多表型来说,这些基因根本不存在。更常见的情况是,如果有许多基因的影响较小,则QTL将无法检测到。在动物和植物育种中,通过同时考虑所有SNP的表型效应已经解决了这个问题。首先,使用具有已知表型的基因分型样本的“训练群体”来估计每个SNP的效应量。然后对“测试”个体的第二个样品进行基因分型,并且基因型用于预测表型;即进行基因组预测。这种方法是成功的现代人工选择计划的基础,并将用于个性化医疗。然而,基因组预测从来没有被应用到野生种群,尽管它有可能革命性的进化生态genetics.We将测试和应用基因组预测的野生种群的Soay羊在希尔塔岛(圣基尔达,苏格兰);在世界上研究最深入的脊椎动物种群之一。自1985年以来,超过95%的动物出生在村湾研究区已监测其整个生命周期,详细的生活史(如出生日期,死亡日期,性别,双胞胎状态,形态测量,免疫测定,寄生虫负荷和终身健身)描述了超过7000只绵羊。在整个发展过程中,许多特征已经被测量了无数次。此外,绵羊基因组已被测序,大多数Soay研究群体已被国际绵羊基因组学联盟发现的38 K SNP分型。使Soay绵羊成为测试基因组预测的理想系统的其他特征是:(i)不同的性状得到了很好的描述,并且具有非常不同的遗传结构。eg.毛色和角型有一个简单的遗传基础,而骨骼测量是多基因的(但仍然高度遗传)和(ii)连锁不平衡在基因组中延伸很长的距离,使芯片上的SNPs '标签'大部分基因组。使用2010年之前出生的所有动物的“训练群体”,我们将估计单个SNP的影响,然后使用这些估计来预测2010年之后出生的动物的表型。我们将把预测结果与观察值进行比较;这是基因组预测首次在野生种群中进行测试或应用。我们还将使用基因组预测来确定哪些性状对自然选择做出了进化反应。我们预测基因组预测在我们的研究人群中是可以实现的,并且它将优于传统的基于谱系的方法来研究自然界中的微观进化。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using genomic prediction to detect microevolutionary change of a quantitative trait.
  • DOI:
    10.1098/rspb.2022.0330
  • 发表时间:
    2022-05-11
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Hunter, D. C.;Ashraf, B.;Berenos, C.;Ellis, P. A.;Johnston, S. E.;Wilson, A. J.;Pilkington, J. G.;Pemberton, J. M.;Slate, J.
  • 通讯作者:
    Slate, J.
Using genomic prediction to detect microevolutionary change of a quantitative trait
使用基因组预测来检测数量性状的微进化变化
  • DOI:
    10.1101/2021.01.06.425564
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hunter D
  • 通讯作者:
    Hunter D
Genomic prediction in the wild: A case study in Soay sheep
野外基因组预测:索伊羊案例研究
  • DOI:
    10.1101/2020.07.15.205385
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ashraf B
  • 通讯作者:
    Ashraf B
Electronic Supplementary Material from Using genomic prediction to detect microevolutionary change of a quantitative trait
使用基因组预测检测数量性状的微进化变化的电子补充材料
  • DOI:
    10.6084/m9.figshare.19634516
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hunter D
  • 通讯作者:
    Hunter D
From water’s ephemeral dance, a new order emerges
从水的短暂舞蹈中,出现了新的秩序
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J Slate其他文献

J Slate的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J Slate', 18)}}的其他基金

The role of epigenetics in evolution
表观遗传学在进化中的作用
  • 批准号:
    NE/V010921/1
  • 财政年份:
    2021
  • 资助金额:
    $ 41.27万
  • 项目类别:
    Research Grant
Life history and Ageing in the Wild
生活史和野外衰老
  • 批准号:
    NE/L00691X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 41.27万
  • 项目类别:
    Research Grant
Finding genes that determine variation in sperm morphology and motility
寻找决定精子形态和活力变化的基因
  • 批准号:
    BB/I02185X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 41.27万
  • 项目类别:
    Research Grant
The Great Tit HapMap Project
大山雀单体型图项目
  • 批准号:
    NE/J012599/1
  • 财政年份:
    2012
  • 资助金额:
    $ 41.27万
  • 项目类别:
    Research Grant
Selection on behaviour and life histories across generations in a natural population
自然群体中各代人的行为和生活史的选择
  • 批准号:
    NE/H02364X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 41.27万
  • 项目类别:
    Research Grant
Genetic basis of female sexual preference in a stalk-eyed fly
茎眼果蝇雌性性偏好的遗传基础
  • 批准号:
    NE/G007071/1
  • 财政年份:
    2009
  • 资助金额:
    $ 41.27万
  • 项目类别:
    Research Grant
Sequencing and the molecular dissection of a 'fitness' locus in Soay sheep
索伊羊“健康”基因座的测序和分子解剖
  • 批准号:
    NE/F001371/1
  • 财政年份:
    2008
  • 资助金额:
    $ 41.27万
  • 项目类别:
    Research Grant
Mapping the zebra finch genome
绘制斑胸草雀基因组图谱
  • 批准号:
    BB/E017509/1
  • 财政年份:
    2007
  • 资助金额:
    $ 41.27万
  • 项目类别:
    Research Grant

相似国自然基金

基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
  • 批准号:
    82372016
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
  • 批准号:
    51079080
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
非编码RNA与蛋白质相互作用预测算法的研究
  • 批准号:
    31000586
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cholesterol homeostasis in the vertebrate retina
脊椎动物视网膜中的胆固醇稳态
  • 批准号:
    10580969
  • 财政年份:
    2023
  • 资助金额:
    $ 41.27万
  • 项目类别:
Novel Early Retinal Imaging Biomarkers for Treating Later Spatial Memory Loss in Experimental Alzheimer's Disease
用于治疗实验性阿尔茨海默病后期空间记忆丧失的新型早期视网膜成像生物标志物
  • 批准号:
    10650636
  • 财政年份:
    2023
  • 资助金额:
    $ 41.27万
  • 项目类别:
Exploring the role and mechanisms of action of UC pouchitis-associated pathobionts (PAP) to gain insights into the etiopathogenesis of Inflammatory Bowel Diseases
探索 UC 储袋炎相关病原体 (PAP) 的作用和作用机制,以深入了解炎症性肠病的发病机制
  • 批准号:
    10679821
  • 财政年份:
    2023
  • 资助金额:
    $ 41.27万
  • 项目类别:
Mitigating retinitis pigmentosa based on a non-invasive rod energy-landscape biomarker
基于非侵入性棒状能量景观生物标志物减轻色素性视网膜炎
  • 批准号:
    10733154
  • 财政年份:
    2023
  • 资助金额:
    $ 41.27万
  • 项目类别:
Gene Coexpression Network Regulating Repetitive Behavior under Nutritional Change.
营养变化下调节重复行为的基因共表达网络。
  • 批准号:
    10737180
  • 财政年份:
    2023
  • 资助金额:
    $ 41.27万
  • 项目类别:
Collaborative Research: DMS/NIGMS 1: Identifiability investigation of Multi-scale Models of Infectious Diseases
合作研究:DMS/NIGMS 1:传染病多尺度模型的可识别性研究
  • 批准号:
    10794480
  • 财政年份:
    2023
  • 资助金额:
    $ 41.27万
  • 项目类别:
BBB dysfunction in post-stroke dementia
脑卒中后痴呆的血脑屏障功能障碍
  • 批准号:
    10701068
  • 财政年份:
    2022
  • 资助金额:
    $ 41.27万
  • 项目类别:
Multi-modal rescue of pulmonary NRF2-insufficiency after burn and burn + inhalation injury to regulate innate immune dysfunction
烧伤及烧伤吸入性损伤后肺NRF2不足的多模式抢救调节先天免疫功能障碍
  • 批准号:
    10651857
  • 财政年份:
    2022
  • 资助金额:
    $ 41.27万
  • 项目类别:
Mechanisms of marrow microenvironmental aging and their impact of progression of clonal hematopoiesis
骨髓微环境衰老机制及其对克隆造血进展的影响
  • 批准号:
    10665803
  • 财政年份:
    2022
  • 资助金额:
    $ 41.27万
  • 项目类别:
Role of microRNA in regulating Fe, Amyloid, and Tau (FeAT) in Alzheimer's disease
microRNA 在阿尔茨海默病中调节 Fe、淀粉样蛋白和 Tau (FeAT) 的作用
  • 批准号:
    10460800
  • 财政年份:
    2021
  • 资助金额:
    $ 41.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了