NSFGEO-NERC Quantifying disequilibrium processes in basaltic volcanism
NSFGEO-NERC 量化玄武岩火山活动中的不平衡过程
基本信息
- 批准号:NE/N018567/1
- 负责人:
- 金额:$ 81.74万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Basaltic volcanism is the most common form of volcanism in the solar system. On Earth, eruptions can impact global and regional climate, and threaten populations living in their shadow, through a combination of ash, gas and lava emissions. The specific risk to the UK from an Icelandic eruption is recognized as one of the four 'highest priority risks' in the National Risk Register of Civil Emergencies. The impact of an eruption is determined by both intensity and style, ranging from explosive and ash-rich (impacting on air-space access and climate) to effusive and gas-rich (affecting public health and crops/livestock locally and distally). Understanding these eruptive styles, and their evolution in time and space is key to forecasting the impacts of eruptions.Eruption style is controlled by the degree of coupling between gas and magma during magma ascent, with strong coupling leading to enhanced fragmentation and ash production. This coupling is controlled by the interplay and feedback among several non-linear processes: multi-phase magma viscosity evolution, crystallisation, gas exsolution, permeability, magma ascent velocity and fragmentation within a dynamic magma plumbing system. Such non-linearity produces complex behaviour. Understanding the processes controlling eruptive style is therefore critical for volcanology and eruption forecasting. A crucial limitation of previous work is that it has been predicated almost exclusively on the assumption of equilibrium between melt, crystals and volatiles. In other words, the volcanology community has conventionally assumed that the processes of magma degassing and solidification/crystallisation occur nearly instantaneously in response to depressurisation during magma ascent and eruption. However, it is now recognised that the timescales required to achieve equilibrium for both crystal growth and volatile exsolution are similar to or longer than ascent times for erupting basaltic magmas, and therefore disequilibria are ubiquitous. Disequilibrium processes are therefore a key missing link preventing quantitative modelling and understanding of volcanic processes, and their impacts.The core aim of the NERC-NSF DisEqm project is to create an empirically-constrained quantitative description of disequilibrium processes in basaltic volcanism, and to apply this to address key volcanological problems through a new numerical modelling frameworkIn order to meet this aim, we bring together a world-leading team to perform experiments using new, ground-breaking synchrotron X-ray imaging and rheometric techniques to visualise and quantify crystallisation, degassing and multiphase, HPHT (high-pressure, high-temperature) viscosity evolution, revolutionising the fields of HPHT experimental petrology and HPHT rheometry. Geochemical constraints will be achieved by applying state of the art petrological analytical techniques to samples produced both on the beamline and in benchtop quench experiments. We will perform large-scale fluid dynamics simulations to inform and validate the 3D numerical modelling, and we will constrain fragmentation and eruption column processes with empirical field studies. Results will be integrated into a state-of-the-art numerical model, and applied to impact-focussed case studies for Icelandic, US and Italian basaltic eruptions. In conclusion, our project will produce a paradigm shift in our understanding of disequilibrium processes during magma ascent and our capacity for modelling basaltic eruption phenomena, creating a step-change in our ability to forecast and quantify the impacts of basaltic eruptions.
玄武岩火山作用是太阳系中最常见的火山作用形式。在地球上,火山爆发会影响全球和区域气候,并通过火山灰、气体和熔岩的排放威胁生活在其阴影下的人口。冰岛火山爆发对英国的具体风险被认为是国家突发事件风险登记册中四个“最高优先级风险”之一。火山爆发的影响取决于强度和类型,从爆炸性和富含灰烬(影响空气空间的进入和气候)到喷涌性和富含气体(影响当地和远端的公共健康和作物/牲畜)。了解这些喷发样式及其在时间和空间上的演化是预测喷发影响的关键。喷发样式受控于岩浆上升过程中气体和岩浆之间的耦合程度,强耦合导致破碎和火山灰产生增强。这种耦合是由几个非线性过程之间的相互作用和反馈控制:多相岩浆粘度演化,结晶,气体出溶,渗透率,岩浆上升速度和破碎的动态岩浆管道系统。这种非线性会产生复杂的行为。因此,了解控制喷发风格的过程对于火山学和喷发预测至关重要。以前的工作的一个关键的限制是,它几乎完全是基于熔体,晶体和挥发物之间的平衡的假设。换句话说,火山学界传统上认为,岩浆脱气和凝固/结晶过程几乎是在岩浆上升和喷发期间对减压的反应中瞬间发生的。然而,现在人们认识到,晶体生长和挥发性出溶达到平衡所需的时间尺度类似于或长于玄武岩岩浆喷发的上升时间,因此不平衡是普遍存在的。因此,不平衡过程是一个关键的缺失环节,阻碍了定量建模和对火山过程及其影响的理解。NERC-NSF DisEqm项目的核心目标是创建一个玄武质火山作用不平衡过程的受限制的定量描述,并通过一个新的数值建模框架将其应用于解决关键的火山学问题。我们汇集了一个世界领先的团队,使用新的、突破性的同步加速器X射线成像和流变技术进行实验,以可视化和量化结晶、脱气和多相、HPHT(高压、高温)粘度演化,彻底改变HPHT实验岩石学和HPHT流变学领域。地球化学的约束将通过应用最先进的岩石学分析技术,在光束线和台式淬火实验中产生的样品。我们将进行大规模的流体动力学模拟,以告知和验证三维数值建模,我们将约束碎片和喷发柱过程与经验实地研究。结果将被整合到一个国家的最先进的数值模型,并适用于冰岛,美国和意大利的玄武岩喷发的影响为重点的案例研究。总之,我们的项目将使我们对岩浆上升过程中的不平衡过程的理解和我们模拟玄武岩喷发现象的能力发生范式转变,使我们预测和量化玄武岩喷发影响的能力发生飞跃。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High spatial resolution analysis of the iron oxidation state in silicate glasses using the electron probe
使用电子探针对硅酸盐玻璃中的铁氧化态进行高空间分辨率分析
- DOI:10.2138/am-2018-6546ccby
- 发表时间:2018
- 期刊:
- 影响因子:3.1
- 作者:Hughes;Kearns;Blundy;Kilgour;Brooker;Balzer;Botcharnikov;Di Genova;Almeev;R. R.
- 通讯作者:R. R.
In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions.
- DOI:10.1126/sciadv.abb0413
- 发表时间:2020-09
- 期刊:
- 影响因子:13.6
- 作者:Di Genova D;Brooker RA;Mader HM;Drewitt JWE;Longo A;Deubener J;Neuville DR;Fanara S;Shebanova O;Anzellini S;Arzilli F;Bamber EC;Hennet L;La Spina G;Miyajima N
- 通讯作者:Miyajima N
Dendritic crystallization in hydrous basaltic magmas controls magma mobility within the Earth's crust.
- DOI:10.1038/s41467-022-30890-8
- 发表时间:2022-06-10
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
Effect of iron and nanolites on Raman spectra of volcanic glasses: A reassessment of existing strategies to estimate the water content
- DOI:10.1016/j.chemgeo.2017.10.035
- 发表时间:2017-12-25
- 期刊:
- 影响因子:3.9
- 作者:Di Genova, Danilo;Sicola, Stefania;Spina, Laura
- 通讯作者:Spina, Laura
Measuring the degree of "nanotilization" of volcanic glasses: Understanding syn-eruptive processes recorded in melt inclusions
- DOI:10.1016/j.lithos.2018.08.011
- 发表时间:2018-10-01
- 期刊:
- 影响因子:3.5
- 作者:Di Genova, Danilo;Caracciolo, Alberto;Kolzenburg, Stephan
- 通讯作者:Kolzenburg, Stephan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heidy Mader其他文献
Heidy Mader的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heidy Mader', 18)}}的其他基金
The flow of crystal-bearing magmas.
含有晶体的岩浆流。
- 批准号:
NE/D003091/1 - 财政年份:2006
- 资助金额:
$ 81.74万 - 项目类别:
Research Grant
相似海外基金
NSFGEO-NERC: Quantifying evolution of magmatism and serpentinisation during the onset of seafloor spreading
NSFGEO-NERC:量化海底扩张开始期间岩浆作用和蛇纹石化的演化
- 批准号:
NE/T007419/1 - 财政年份:2023
- 资助金额:
$ 81.74万 - 项目类别:
Research Grant
NSFGEO-NERC: Quantifying evolution of magmatism and serpentinisation during the onset of seafloor spreading
NSFGEO-NERC:量化海底扩张开始期间岩浆作用和蛇纹石化的演化
- 批准号:
NE/T007192/1 - 财政年份:2023
- 资助金额:
$ 81.74万 - 项目类别:
Research Grant
Collaborative Research: NSFGEO-NERC: QUICCHE: Quantifying Interocean fluxes in the Cape Cauldron Hotspot of Eddy kinetic energy
合作研究:NSFGEO-NERC:QUICCHE:量化涡流动能 Cape Cauldron 热点中的洋间通量
- 批准号:
2148676 - 财政年份:2022
- 资助金额:
$ 81.74万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO-NERC: QUICCHE: Quantifying Interocean fluxes in the Cape Cauldron Hotspot of Eddy kinetic energy
合作研究:NSFGEO-NERC:QUICCHE:量化涡流动能 Cape Cauldron 热点中的洋间通量
- 批准号:
2148677 - 财政年份:2022
- 资助金额:
$ 81.74万 - 项目类别:
Continuing Grant
NSFGEO-NERC: Quantifying evolution of magmatism and serpentinisation during the onset of seafloor spreading
NSFGEO-NERC:量化海底扩张开始期间岩浆作用和蛇纹石化的演化
- 批准号:
2026866 - 财政年份:2020
- 资助金额:
$ 81.74万 - 项目类别:
Standard Grant
NSFGEO-NERC: Quantifying the Modern and Glacial Ocean's Carbon Cycle Including Isotopes
NSFGEO-NERC:量化现代和冰川海洋的碳循环(包括同位素)
- 批准号:
NE/T009357/1 - 财政年份:2019
- 资助金额:
$ 81.74万 - 项目类别:
Research Grant
NSFGEO-NERC: Quantifying the Modern and Glacial Ocean's Carbon Cycle Including Isotopes
NSFGEO-NERC:量化现代和冰川海洋的碳循环(包括同位素)
- 批准号:
1924215 - 财政年份:2019
- 资助金额:
$ 81.74万 - 项目类别:
Standard Grant
NSFGEO-NERC Quantifying disequilibrium processes in basaltic volcanism (DisEqm)
NSFGEO-NERC 量化玄武岩火山活动中的不平衡过程 (DisEqm)
- 批准号:
1642569 - 财政年份:2016
- 资助金额:
$ 81.74万 - 项目类别:
Continuing Grant
NSFGEO-NERC Quantifying disequilibrium processes in basaltic volcanism
NSFGEO-NERC 量化玄武岩火山活动中的不平衡过程
- 批准号:
NE/N018443/1 - 财政年份:2016
- 资助金额:
$ 81.74万 - 项目类别:
Research Grant
NSFGEO-NERC: Southern Ocean diatoms and climate change: quantifying the relative roles of diversity and plasticity in evolution
NSFGEO-NERC:南大洋硅藻与气候变化:量化进化中多样性和可塑性的相对作用
- 批准号:
NE/P006981/1 - 财政年份:2016
- 资助金额:
$ 81.74万 - 项目类别:
Research Grant