NSFGEO-NERC Quantifying disequilibrium processes in basaltic volcanism
NSFGEO-NERC 量化玄武岩火山活动中的不平衡过程
基本信息
- 批准号:NE/N018443/1
- 负责人:
- 金额:$ 57.93万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Basaltic volcanism is the most common form of volcanism in the solar system. On Earth, eruptions can impact global and regional climate, and threaten populations living in their shadow, through a combination of ash, gas and lava emissions. The specific risk to the UK from an Icelandic eruption is recognized as one of the four 'highest priority risks' in the National Risk Register of Civil Emergencies. The impact of an eruption is determined by both intensity and style, ranging from explosive and ash-rich (impacting on air-space access and climate) to effusive and gas-rich (affecting public health and crops/livestock locally and distally). Understanding these eruptive styles, and their evolution in time and space is key to forecasting the impacts of eruptions.Eruption style is controlled by the degree of coupling between gas and magma during magma ascent, with strong coupling leading to enhanced fragmentation and ash production. This coupling is controlled by the interplay and feedback among several non-linear processes: multi-phase magma viscosity evolution, crystallisation, gas exsolution, permeability, magma ascent velocity and fragmentation within a dynamic magma plumbing system. Such non-linearity produces complex behaviour. Understanding the processes controlling eruptive style is therefore critical for volcanology and eruption forecasting. A crucial limitation of previous work is that it has been predicated almost exclusively on the assumption of equilibrium between melt, crystals and volatiles. In other words, the volcanology community has conventionally assumed that the processes of magma degassing and solidification/crystallisation occur nearly instantaneously in response to depressurisation during magma ascent and eruption. However, it is now recognised that the timescales required to achieve equilibrium for both crystal growth and volatile exsolution are similar to or longer than ascent times for erupting basaltic magmas, and therefore disequilibria are ubiquitous. Disequilibrium processes are therefore a key missing link preventing quantitative modelling and understanding of volcanic processes, and their impacts.The core aim of the NERC-NSF DisEqm project is to create an empirically-constrained quantitative description of disequilibrium processes in basaltic volcanism, and to apply this to address key volcanological problems through a new numerical modelling frameworkIn order to meet this aim, we bring together a world-leading team to perform experiments using new, ground-breaking synchrotron X-ray imaging and rheometric techniques to visualise and quantify crystallisation, degassing and multiphase, HPHT (high-pressure, high-temperature) viscosity evolution, revolutionising the fields of HPHT experimental petrology and HPHT rheometry. Geochemical constraints will be achieved by applying state of the art petrological analytical techniques to samples produced both on the beamline and in benchtop quench experiments. We will perform large-scale fluid dynamics simulations to inform and validate the 3D numerical modelling, and we will constrain fragmentation and eruption column processes with empirical field studies. Results will be integrated into a state-of-the-art numerical model, and applied to impact-focussed case studies for Icelandic, US and Italian basaltic eruptions. In conclusion, our project will produce a paradigm shift in our understanding of disequilibrium processes during magma ascent and our capacity for modelling basaltic eruption phenomena, creating a step-change in our ability to forecast and quantify the impacts of basaltic eruptions.
玄武岩火山作用是太阳系中最常见的火山作用形式。在地球上,火山喷发会影响全球和区域气候,并通过火山灰、气体和熔岩的排放威胁到生活在火山阴影下的人口。冰岛火山喷发给英国带来的具体风险被确认为国家紧急情况风险登记册中四个最高优先级风险之一。喷发的影响取决于喷发的强度和方式,从爆炸性和富含火山灰的(影响空域通道和气候)到喷出的和富含气体的(影响当地和远距离的公共健康和农作物/牲畜)。了解这些喷发方式及其在时间和空间上的演化是预测喷发影响的关键。喷发方式受控于岩浆上升过程中气体和岩浆之间的耦合程度,强烈的耦合导致增强的破碎和火山灰的产生。这种耦合受控于几个非线性过程之间的相互作用和反馈:动态岩浆管道系统中的多相岩浆粘度演化、结晶、气体出溶、渗透率、岩浆上升速度和破碎。这种非线性会产生复杂的行为。因此,了解控制喷发方式的过程对于火山学和喷发预测至关重要。以前工作的一个关键局限性是,它几乎完全建立在熔体、晶体和挥发物之间的平衡假设上。换句话说,火山界通常认为,岩浆的脱气和凝固/结晶过程几乎是瞬间发生的,以响应岩浆上升和喷发期间的降压。然而,现在人们认识到,晶体生长和挥发出液达到平衡所需的时间与玄武岩岩浆喷发的上升时间相似或更长,因此不平衡是普遍存在的。NERC-NSF DisEqm项目的核心目标是创建一个经验受限的玄武岩火山作用不平衡过程的定量描述,并将其应用于通过一个新的数值模拟框架来解决关键的火山学问题。为了实现这一目标,我们召集了一个世界领先的团队,使用新的突破性同步辐射X射线成像和流变学技术进行实验,以可视化和量化结晶、脱气和多相、HPHT(高压、高温)粘度演化,使HPHT实验岩石学和HPHT流变学领域发生革命性变化。通过将最先进的岩石学分析技术应用于光束线和台式淬火实验中产生的样品,将实现地球化学限制。我们将进行大规模的流体动力学模拟,以告知和验证3D数值模拟,我们将通过经验现场研究来约束碎裂和喷发柱过程。结果将被整合到最先进的数值模型中,并应用于冰岛、美国和意大利玄武岩喷发的以影响为重点的案例研究。总之,我们的项目将使我们对岩浆上升过程中的不平衡过程的理解和我们模拟玄武岩喷发现象的能力发生范式转变,使我们预测和量化玄武岩喷发影响的能力发生阶段性变化。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Birth of a Hawaiian Fissure Eruption
- DOI:10.1029/2020jb020903
- 发表时间:2021-01-01
- 期刊:
- 影响因子:3.9
- 作者:Houghton, B. F.;Tisdale, C. M.;Patrick, M. R.
- 通讯作者:Patrick, M. R.
Dendritic crystallization in hydrous basaltic magmas controls magma mobility within the Earth's crust.
- DOI:10.1038/s41467-022-30890-8
- 发表时间:2022-06-10
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
Experimental observations of bubbling regimes at in-line multi-orifice bubblers
- DOI:10.1016/j.ijmultiphaseflow.2019.02.008
- 发表时间:2019-05-01
- 期刊:
- 影响因子:3.8
- 作者:Capponi, Antonio;Llewellin, Edward W.
- 通讯作者:Llewellin, Edward W.
Magma fragmentation in highly explosive basaltic eruptions induced by rapid crystallization
- DOI:10.1038/s41561-019-0468-6
- 发表时间:2019-12-01
- 期刊:
- 影响因子:18.3
- 作者:Arzilli, Fabio;La Spina, Giuseppe;Lee, Peter D.
- 通讯作者:Lee, Peter D.
Proximal lava drainage controls on basaltic fissure eruption dynamics
- DOI:10.1007/s00445-017-1164-2
- 发表时间:2017-11-01
- 期刊:
- 影响因子:3.5
- 作者:Jones, T. J.;Llewellin, E. W.;Vye-Brown, C.
- 通讯作者:Vye-Brown, C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Llewellin其他文献
Edward Llewellin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Llewellin', 18)}}的其他基金
NSFGEO-NERC: A general model for bubble nucleation and growth in volcanic systems
NSFGEO-NERC:火山系统中气泡成核和生长的通用模型
- 批准号:
NE/X016668/1 - 财政年份:2023
- 资助金额:
$ 57.93万 - 项目类别:
Research Grant
NSFGEO-NERC: Collaborative Research: Multi-scale investigation of rheology and emplacement of multi-phase lava
NSFGEO-NERC:合作研究:流变学和多相熔岩安置的多尺度研究
- 批准号:
NE/T009594/1 - 财政年份:2019
- 资助金额:
$ 57.93万 - 项目类别:
Research Grant
Facility for high temperature, high pressure rheology of geomaterials
岩土材料高温高压流变装置
- 批准号:
NE/T009098/1 - 财政年份:2019
- 资助金额:
$ 57.93万 - 项目类别:
Research Grant
Reconstructing eruptive processes from volatile distribution in volcanic glass
从火山玻璃中的挥发物分布重建喷发过程
- 批准号:
NE/N002954/1 - 财政年份:2016
- 资助金额:
$ 57.93万 - 项目类别:
Research Grant
Explosive volcanic eruption processes: from mesoscopic simulations to constitutive laws
火山喷发过程:从介观模拟到本构定律
- 批准号:
NE/D009758/2 - 财政年份:2007
- 资助金额:
$ 57.93万 - 项目类别:
Fellowship
Explosive volcanic eruption processes: from mesoscopic simulations to constitutive laws
火山喷发过程:从介观模拟到本构定律
- 批准号:
NE/D009758/1 - 财政年份:2006
- 资助金额:
$ 57.93万 - 项目类别:
Fellowship
相似海外基金
NSFGEO-NERC: Quantifying evolution of magmatism and serpentinisation during the onset of seafloor spreading
NSFGEO-NERC:量化海底扩张开始期间岩浆作用和蛇纹石化的演化
- 批准号:
NE/T007419/1 - 财政年份:2023
- 资助金额:
$ 57.93万 - 项目类别:
Research Grant
NSFGEO-NERC: Quantifying evolution of magmatism and serpentinisation during the onset of seafloor spreading
NSFGEO-NERC:量化海底扩张开始期间岩浆作用和蛇纹石化的演化
- 批准号:
NE/T007192/1 - 财政年份:2023
- 资助金额:
$ 57.93万 - 项目类别:
Research Grant
Collaborative Research: NSFGEO-NERC: QUICCHE: Quantifying Interocean fluxes in the Cape Cauldron Hotspot of Eddy kinetic energy
合作研究:NSFGEO-NERC:QUICCHE:量化涡流动能 Cape Cauldron 热点中的洋间通量
- 批准号:
2148676 - 财政年份:2022
- 资助金额:
$ 57.93万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO-NERC: QUICCHE: Quantifying Interocean fluxes in the Cape Cauldron Hotspot of Eddy kinetic energy
合作研究:NSFGEO-NERC:QUICCHE:量化涡流动能 Cape Cauldron 热点中的洋间通量
- 批准号:
2148677 - 财政年份:2022
- 资助金额:
$ 57.93万 - 项目类别:
Continuing Grant
NSFGEO-NERC: Quantifying evolution of magmatism and serpentinisation during the onset of seafloor spreading
NSFGEO-NERC:量化海底扩张开始期间岩浆作用和蛇纹石化的演化
- 批准号:
2026866 - 财政年份:2020
- 资助金额:
$ 57.93万 - 项目类别:
Standard Grant
NSFGEO-NERC: Quantifying the Modern and Glacial Ocean's Carbon Cycle Including Isotopes
NSFGEO-NERC:量化现代和冰川海洋的碳循环(包括同位素)
- 批准号:
NE/T009357/1 - 财政年份:2019
- 资助金额:
$ 57.93万 - 项目类别:
Research Grant
NSFGEO-NERC: Quantifying the Modern and Glacial Ocean's Carbon Cycle Including Isotopes
NSFGEO-NERC:量化现代和冰川海洋的碳循环(包括同位素)
- 批准号:
1924215 - 财政年份:2019
- 资助金额:
$ 57.93万 - 项目类别:
Standard Grant
NSFGEO-NERC Quantifying disequilibrium processes in basaltic volcanism (DisEqm)
NSFGEO-NERC 量化玄武岩火山活动中的不平衡过程 (DisEqm)
- 批准号:
1642569 - 财政年份:2016
- 资助金额:
$ 57.93万 - 项目类别:
Continuing Grant
NSFGEO-NERC Quantifying disequilibrium processes in basaltic volcanism
NSFGEO-NERC 量化玄武岩火山活动中的不平衡过程
- 批准号:
NE/N018567/1 - 财政年份:2016
- 资助金额:
$ 57.93万 - 项目类别:
Research Grant
NSFGEO-NERC: Southern Ocean diatoms and climate change: quantifying the relative roles of diversity and plasticity in evolution
NSFGEO-NERC:南大洋硅藻与气候变化:量化进化中多样性和可塑性的相对作用
- 批准号:
NE/P006981/1 - 财政年份:2016
- 资助金额:
$ 57.93万 - 项目类别:
Research Grant