The deep-focus earthquake cycle

深源地震周期

基本信息

  • 批准号:
    NE/P017525/2
  • 负责人:
  • 金额:
    $ 47.31万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Earthquakes do not occur everywhere on Earth. Instead they are concentrated in bands along the edges of the oceanic and continental plates that make up the Earth's surface. Approximately three quarters of earthquakes occur within 60km (37 miles), of the surface - about the distance between Manchester and Leeds and less than the distance between Glasgow and Edinburgh. At convergent plate boundaries, for example off the East cost of Japan and the West coast of South America, oceanic crust is subducted deep into the Earth. At these boundaries earthquakes can occur to depths of almost 700 km, or 435 miles, a distance similar to that between London and Inverness.The earthquakes that occur within a few 10s of kilometres of the Earth's surface occur in a cyclic pattern. Two plates that are stuck together and being forced to move in different directions by forces deep in the Earth, will build up strain. At some point the strain is too much for the rocks to hold and an earthquake occurs. This is similar to the stretching and breaking of an elastic band. After the earthquake, there is a period of relaxation and fault healing. For earthquakes deep in the Earth the nature of the snapping process has to be different because pressure, and therefore friction, increases with depth. It is analogous to dragging a box or sled along the floor, the more weight there is in the box the harder it is to pull and if there is too much weight in the box, the friction is too great for the box to be moved. But, because earthquakes continue to occur at great depths, there must be some process analogous to putting wheels on the box that reduces friction and allows motion.The question that this proposal aims to understand is: what is the physical mechanism providing the wheels, permitting deep earthquakes?I have spent the past few years developing the unique experimental apparatus to tackle this question. In my apparatus I will recreate the extreme pressures (200,000 atmospheres) and elevated temperatures (800-1000 C) under which the deep earthquakes occur. I will then strain my samples and listen for the sound emitted by "lab-quakes". By analysing the size and number of "lab-quakes" I will be able to understand what physical processes are active in deep earthquakes and so what provides the 'wheels' allowing deep earthquakes to happen.The answers to the questions posed here have exciting implications for our understanding of how the Earth developed and how it behaves now. If I can determine the processes that drive deep earthquakes, I will also have to understand the mineralogy and stress present in small regions of the deep Earth. With a thorough understanding of deep earthquakes, we can gain insights into why the Earth is so different from the other rocky planets and why the Earth is hospitable to life.
地球上并不是所有地方都会发生地震。相反,它们集中在构成地球表面的海洋和大陆板块边缘的带状区域。大约四分之三的地震发生在距离地表60公里(37英里)的范围内--大约是曼彻斯特和利兹之间的距离,而不是格拉斯哥和爱丁堡之间的距离。在汇聚的板块边界,例如日本的东海岸和南美洲的西海岸,洋壳被俯冲到地球深处。在这些边界处,地震可以发生在近700公里(435英里)的深处,这一距离类似于伦敦和因弗内斯之间的距离。发生在地球表面几十公里以内的地震是以周期性模式发生的。两个板块粘在一起,在地球深处的力量的作用下,被迫向不同的方向移动,将会产生张力。在某种程度上,岩石承受不了太大的应变,地震就发生了。这类似于橡皮筋的拉伸和断裂。地震发生后,有一段时间是放松和断层愈合的时期。对于地球深处的地震,咬合过程的性质必须不同,因为压力,因此摩擦,随着深度的增加而增加。这类似于沿着地板拖拽箱子或雪橇,箱子里的重量越大,拉起来就越难,如果箱子里的重量太大,摩擦力太大,箱子就无法移动。但是,由于地震继续在很深的地方发生,一定有一些类似于在盒子上放置轮子的过程,以减少摩擦并允许运动。这项提议旨在理解的问题是:提供轮子的物理机制是什么,从而允许深层地震?我在过去几年里一直在开发独特的实验设备来解决这个问题。在我的仪器中,我将再现发生深部地震时的极端压力(200,000个大气压)和高温(800-1000摄氏度)。然后,我会过滤我的样本,听一听“实验室地震”发出的声音。通过分析“实验室地震”的规模和数量,我将能够理解哪些物理过程在深部地震中是活跃的,以及是什么提供了允许深部地震发生的“车轮”。对这里提出的问题的答案对于我们理解地球是如何发展以及它现在的行为具有令人兴奋的启示。如果我能确定驱动深部地震的过程,我还必须了解地球深部小区域存在的矿物学和应力。通过对深部地震的透彻了解,我们可以深入了解为什么地球与其他岩石行星如此不同,为什么地球适合生命。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kelyphite textures experimentally reproduced through garnet breakdown in the presence of a melt phase
  • DOI:
    10.1093/petrology/egac110
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    I. Ezad;D. Dobson;A. Thomson;E. Jennings;S. Hunt;J. Brodholt
  • 通讯作者:
    I. Ezad;D. Dobson;A. Thomson;E. Jennings;S. Hunt;J. Brodholt
Application of a new method for accurate determination of a and ß texture in Ti-6Al-4V from synchrotron diffraction intensities
应用同步加速器衍射强度准确测定 Ti-6Al-4V 中 a 和 α 织构的新方法
  • DOI:
    10.1016/j.matchar.2023.112769
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Daniel C
  • 通讯作者:
    Daniel C
Deformation of Post-Spinel Under the Lower Mantle Conditions
下地幔条件下后尖晶石的变形
  • DOI:
    10.1029/2021jb023586
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Xu F
  • 通讯作者:
    Xu F
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Hunt其他文献

セラミックスナノ粒子分散樹脂を用いたインプリントプロセスの高度化
使用陶瓷纳米颗粒分散树脂的复杂压印工艺
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fujio Tsumori;Simon Hunt;Toshiko Osada;Hideshi Miura;米倉和啓,徳丸和樹,工藤健太郎,品川一成,津守不二夫;津守不二夫
  • 通讯作者:
    津守不二夫
Wavy Micro Channels in Micropatterned Ceramic Sheet Formed by Combined Process of Laser Beam Machining and Imprinting
激光束加工和压印联合工艺形成微图案陶瓷片中的波状微通道
積層インプリントアルミナ成形体のスケールによる材料変形への影響
氧化皮对层压压印氧化铝坯体材料变形的影响
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fujio Tsumori;Simon Hunt;Toshiko Osada;Hideshi Miura;米倉和啓,徳丸和樹,工藤健太郎,品川一成,津守不二夫
  • 通讯作者:
    米倉和啓,徳丸和樹,工藤健太郎,品川一成,津守不二夫
Fabrication of 3D ceramic micro channels by imprinting method
压印法制备3D陶瓷微通道
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kazuki Tokumaru;Simon Hunt;Fujio Tsumori
  • 通讯作者:
    Fujio Tsumori
Formation of ceramic micro-channel by combination of laser beam machining and micro powder imprinting
激光束加工与微粉末压印相结合形成陶瓷微通道
  • DOI:
    10.7567/jjap.54.06fm03
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Fujio Tsumori;Simon Hunt;Toshiko Osada;Hideshi Miura
  • 通讯作者:
    Hideshi Miura

Simon Hunt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Hunt', 18)}}的其他基金

Feedbacks between mineral reactions and mantle convection
矿物反应与地幔对流之间的反馈
  • 批准号:
    NE/V018272/1
  • 财政年份:
    2021
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Research Grant
The deep-focus earthquake cycle
深源地震周期
  • 批准号:
    NE/P017525/1
  • 财政年份:
    2017
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Fellowship
Experimental determination of mantle rheology
地幔流变学的实验测定
  • 批准号:
    NE/H016309/1
  • 财政年份:
    2011
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Fellowship

相似国自然基金

基于FOCUS-PDCA循环法的透皮贴剂BE试验全流程管理模式构建与实施效果评估
  • 批准号:
    JSYGY-3-2024-YS59
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Focus+Context支持的群集三维对象变形可视化
  • 批准号:
    41671381
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
信息可视化中基于语义DOI的F+C交互方法及应用
  • 批准号:
    61103096
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
ILC国际直线对撞机加速器物理与设计研究
  • 批准号:
    10775154
  • 批准年份:
    2007
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

FCDO Geographical Focus Fellowship, UKRI Policy Fellowship
FCDO 地理焦点奖学金、UKRI 政策奖学金
  • 批准号:
    ES/Y004469/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Fellowship
AUTOFARM: Automating UAV Technology for Orchards to Focus Agricultural Resource Management
AUTOFARM:果园自动化无人机技术,专注于农业资源管理
  • 批准号:
    10108599
  • 财政年份:
    2024
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Launchpad
REU Site: Summer Undergraduate Research Focus (SURF): Anthropogenic Impacts on Coastal and Marine Systems
REU 网站:暑期本科生研究重点 (SURF):人为对沿海和海洋系统的影响
  • 批准号:
    2349151
  • 财政年份:
    2024
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Continuing Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
  • 批准号:
    MR/X009580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Fellowship
Genome-wide translational responses to stress: a focus on ribosome stalling
全基因组对压力的翻译反应:关注核糖体停滞
  • 批准号:
    BB/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Research Grant
Mitigating presentation attacks in remote identity proofing (MIMER): Pakistan in Focus
减轻远程身份验证 (MIMER) 中的演示攻击:巴基斯坦焦点
  • 批准号:
    EP/Y002288/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Research Grant
Investigating the role of projectile density in impact cratering with a focus on low-density projectiles.
研究弹丸密度在撞击坑中的作用,重点关注低密度弹丸。
  • 批准号:
    24K06983
  • 财政年份:
    2024
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CyberCorps Scholarship for Service: Empowering the Cybersecurity Workforce with a Focus on Artificial Intelligence
Cyber​​Corps 服务奖学金:以人工智能为重点,为网络安全人员提供支持
  • 批准号:
    2336539
  • 财政年份:
    2024
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Continuing Grant
Exploring the Dynamics of Academic Science Production: A Focus on Patent-Paper Pairs
探索学术科学生产的动态:关注专利论文对
  • 批准号:
    24K05092
  • 财政年份:
    2024
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Grant for R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了