GeoStationary Fire data for Developing Countries

发展中国家的地球静止火灾数据

基本信息

  • 批准号:
    NE/S014004/1
  • 负责人:
  • 金额:
    $ 14.27万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Developing countries are the site of most landscape burning worldwide. They burn the most peatland and forest, have the highest deforestation and net fire-related greenhouse gas emissions, squander economic opportunity by burning agricultural residues, have infrastructure such as power lines and resources such as forest plantations and protected areas at risk from fire, and experience the most recurrent and worst air pollution events associated with landscape burning. Atmospheric impacts spread far beyond national borders, making this a regional problem through the spread of pollution, and a global problem through impacts on climate from carbon emissions. Billions of dollars have been spent on the ground- and space-based infrastructure necessary to provide real-time, continuous remote sensing observations that support meteorological forecasts worldwide. Our Project will harness this infrastructure in order to benefit developing country users who, because of the above issues, require accurate, actionable, and extremely up-to-date information on the location and characteristics of wildfires in their area of interest, and on the smoke that these fires are releasing into the atmosphere.Our project will make available real-time, accurate and actionable information on landscape fires and fire emissions through a combination of work by the UK team and our overseas partners. This new information will cover dozens of DAC-list countries in the tropics and sub-tropics that experience significant challenges from landscape burning, and so the benefits will be regional throughout the tropics and sub-tropics, rather than to only a few nations. We will use a source of new continuous and real-time (10 to 15 minute update frequency) meteorological satellite data to provide this real-time intelligence on wildfire state, exploiting algorithms developed under NERC funded research and working with Partners (IPMA, Portugal and UNAM, Mexico) who will implement these algorithms in their own satellite data processing chains to provide 24-hr guaranteed (99%) information availability on landscape fires. The resulting real-time wildfire information will be made available to users in all developing nations through the already extremely widely used Advanced Fire Information System (AFIS) run by our Partner CSIR, South Africa, who have tens of thousands of users already and as a result of this new pan-tropical information will greatly extend their reach throughout the tropics since this highest temporal resolution data is currently only available at the highest quality over North and West Africa. Our project will also provide the information required to turn the real-time fire information into real-time estimates of fire emissions - particularly focusing on health-impacting particulate matter and total carbon emissions, which will benefit developing country users who are focused on health-impacting particulate and GHG emissions assessments and the national programmes aimed at their reduction. Overall our project will provide a real step-change in actionable fire information available in the developing countries of South and Southeast Asia, Southern and East Africa, Mexico, Central and South America. Institutions and individuals in these regions will be able to identify fires burning close to power lines and/or other important critical infrastructure in order to take action (e.g. temporarily turn off the power line letting the fire pass underneath without problems), that have started within or close to forest reserves, plantations or protected areas (with the potential to dispatch fire response crews in a far more timely manner than currently), and which are impacting health and national GHG emissions (with information now available to better quantify these, ultimately in support at efforts to reduce them and thus gain through health improvements and/or REDD+ schemes. Keywords: Wildfires, smoke, satellites, infrastructure and area protection.
发展中国家是世界上大多数景观焚烧的地点。他们燃烧最多的泥炭地和森林,森林砍伐和与火灾相关的温室气体净排放量最高,通过燃烧农业残留物浪费经济机会,电力线等基础设施和森林种植园等资源以及保护区面临火灾风险,并经历与景观燃烧相关的最频繁和最严重的空气污染事件。大气层的影响远远超出了国界,通过污染的扩散成为一个区域性问题,通过碳排放对气候的影响成为一个全球性问题。数十亿美元用于地面和空间基础设施,这些基础设施是提供支持全球气象预报的实时、连续遥感观测所必需的。我们的项目将利用这一基础设施,以造福发展中国家的用户,由于上述问题,他们需要准确,可操作的,以及关于他们感兴趣的地区野火的位置和特征的最新信息,以及这些火灾释放到大气中的烟雾。通过英国团队和我们海外合作伙伴的共同努力,提供有关景观火灾和火灾排放的准确和可操作的信息。这些新的信息将涵盖数十个热带和亚热带地区的DAC名单国家,这些国家面临着景观燃烧的重大挑战,因此这些好处将是整个热带和亚热带地区的区域性的,而不仅仅是少数国家。我们将使用新的连续和实时的源(10至15分钟更新频率)气象卫星数据,以提供野火状态的实时情报,利用NERC资助的研究开发的算法,并与合作伙伴合作(IPMA,葡萄牙和墨西哥国立自治大学,墨西哥)将在自己的卫星数据处理链中实施这些算法,以提供24小时保证(99%)的景观火灾信息可用性。由此产生的实时野火信息将通过我们的合作伙伴南非CSIR运行的已经非常广泛使用的高级火灾信息系统(AFIS)提供给所有发展中国家的用户,他们已经有成千上万的用户,由于这种新的泛-热带信息将大大扩展其覆盖范围,因为这种最高时间分辨率的数据目前只能在非洲北部和西部的最高质量。我们的项目还将提供将实时火灾信息转化为实时火灾排放估计所需的信息,特别是关注影响健康的颗粒物和总碳排放,这将有利于发展中国家的用户,他们专注于影响健康的颗粒物和温室气体排放评估以及旨在减少这些排放的国家计划。总的来说,我们的项目将为南亚和东南亚、南部和东部非洲、墨西哥、中美洲和南美洲的发展中国家提供真实的可采取行动的火灾信息。这些地区的机构和个人将能够识别靠近电力线和/或其他重要关键基础设施的火灾,以便采取行动(例如,暂时关闭电源线,让火在下面毫无问题地通过),在森林保护区内或附近开始,种植园或保护区(有可能比现在更及时地派遣消防人员),以及影响健康和国家温室气体排放的因素(现在有信息可以更好地量化这些因素,最终支持减少这些因素的努力,从而通过改善健康和/或REDD+计划获得收益。关键词:野火,烟雾,卫星,基础设施和区域保护。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Derivation and validation of top-down African biomass burning CO emissions and fuel consumption measures derived using geostationary FRP data and Sentinal-5P TROPOMI CO retrievals
使用对地静止 FRP 数据和 Sentinal-5P TROPOMI CO 检索得出的自上而下的非洲生物质燃烧 CO 排放和燃料消耗测量值的推导和验证
  • DOI:
    10.5194/acp-2022-193
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nguyen H
  • 通讯作者:
    Nguyen H
Improvements in high-temporal resolution active fire detection and FRP retrieval over the Americas using GOES-16 ABI with the geostationary Fire Thermal Anomaly (FTA) algorithm
使用 GOES-16 ABI 和对地静止火热异常 (FTA) 算法改进美洲的高时间分辨率主动火灾探测和 FRP 检索
  • DOI:
    10.1016/j.srs.2021.100016
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xu W
  • 通讯作者:
    Xu W
Biomass burning CO, PM and fuel consumption per unit burned area estimates derived across Africa using geostationary SEVIRI fire radiative power and Sentinel-5P CO data
使用对地静止 SEVIRI 火辐射功率和 Sentinel-5P CO 数据得出非洲各地生物质燃烧 CO、PM 和每单位燃烧面积燃料消耗的估计值
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Wooster其他文献

Assessing the field-scale crop water condition over an intensive agricultural plain using UAV-based thermal and multispectral imagery
利用无人机热红外和多光谱图像评估集约农业平原的田间尺度作物水分状况
  • DOI:
    10.1016/j.jhydrol.2025.132966
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Saroj Kumar Dash;Harjinder Sembhi;Mary Langsdale;Martin Wooster;Emma Dodd;Darren Ghent;Rajiv Sinha
  • 通讯作者:
    Rajiv Sinha
A Mathematical Approach to Merging Data from Different Trace Gas/Particulate Sensors Having Dissimilar (T90) Response Times: Application to Fire Emission Factor Determination
  • DOI:
    10.4209/aaqr.2019.02.0061
  • 发表时间:
    2024-12-14
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Tianran Zhang;Martin Wooster;David C. Green;Bruce Main
  • 通讯作者:
    Bruce Main

Martin Wooster的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Wooster', 18)}}的其他基金

NERC Earth Observation Data Analysis and Artificial-Intelligence Service (NEODAAS)
NERC 地球观测数据分析和人工智能服务 (NEODAAS)
  • 批准号:
    NE/Y005406/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Research Grant
NERC Field Spectroscopy Facility (FSF)
NERC 现场光谱设施 (FSF)
  • 批准号:
    NE/Y005392/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Research Grant
Development and application of Earth Observation to support reductions in methane emission from agriculture (EOforCH4)
地球观测的开发和应用以支持减少农业甲烷排放(EOforCH4)
  • 批准号:
    ST/Y000420/1
  • 财政年份:
    2023
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Research Grant
EO4AgroClimate: How agri-tech and space-based solutions can support climate smart agriculture in Australia
EO4AgroClimate:农业技术和天基解决方案如何支持澳大利亚的气候智能农业
  • 批准号:
    ST/W007088/1
  • 财政年份:
    2021
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Research Grant
Pollution and Climate Smart Agriculture in China (PaCSAC)
中国污染与气候智能型农业 (PaCSAC)
  • 批准号:
    ST/V002651/1
  • 财政年份:
    2020
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Research Grant
NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS)
NERC 地球观测数据采集和分析服务 (NEODAAS)
  • 批准号:
    NE/S013377/1
  • 财政年份:
    2019
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Research Grant
UK-China Agritech Challenge - Utilizing Earth Observation and UAV Technologies to Deliver Pest and Disease Products and Services to End Users in China
中英农业科技挑战赛——利用地球观测和无人机技术为中国最终用户提供病虫害产品和服务
  • 批准号:
    BB/S020977/1
  • 财政年份:
    2019
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Research Grant
Field Spectroscopy Facility (FSF)
现场光谱设备 (FSF)
  • 批准号:
    NE/S013385/1
  • 财政年份:
    2019
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Research Grant
New satellite observations to improve monitoring and forecasting of severe smoke pollution over SE Asia caused by Indonesian landscape burning
新的卫星观测可改善对印度尼西亚景观燃烧造成的东南亚严重烟雾污染的监测和预报
  • 批准号:
    ST/S003029/1
  • 财政年份:
    2019
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Research Grant
KEY IN SITU MEASURES OF EL NINO EXACERBATED FIRES IN INDONESIA
针对厄尔尼诺现象加剧印度尼西亚火灾的关键现场措施
  • 批准号:
    NE/N01555X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Research Grant

相似海外基金

RAPID: Enhancing WUI Fire Assessment through Comprehensive Data and High-Fidelity Simulation
RAPID:通过综合数据和高保真模拟增强 WUI 火灾评估
  • 批准号:
    2401876
  • 财政年份:
    2024
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Standard Grant
Optimization of High Frequency Irreversible Electroporation (H-FIRE) for tumor ablation and immune system activation in pancreatic cancer applications
高频不可逆电穿孔 (H-FIRE) 的优化,用于胰腺癌应用中的肿瘤消融和免疫系统激活
  • 批准号:
    10659581
  • 财政年份:
    2023
  • 资助金额:
    $ 14.27万
  • 项目类别:
Collection of scientific data on tropical peatland fires and its application to fire risk assessment
热带泥炭地火灾科学数据收集及其在火灾风险评估中的应用
  • 批准号:
    23H01514
  • 财政年份:
    2023
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Processing terrestrial lidar data to produce vertical profiles of fire fuel for use in the Canadian Forest Fire Danger Rating System
处理地面激光雷达数据以生成火灾燃料的垂直剖面,用于加拿大森林火灾危险评级系统
  • 批准号:
    576978-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Alliance Grants
FIrst REsponse BUrn Diagnostic System (FIRE-BUDS)
第一响应烧伤诊断系统 (FIRE-BUDS)
  • 批准号:
    10392084
  • 财政年份:
    2022
  • 资助金额:
    $ 14.27万
  • 项目类别:
Wildland fire management using near real time high resolution remote sensing data
使用近实时高分辨率遥感数据进行荒地火灾管理
  • 批准号:
    561248-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Alliance Grants
FIrst REsponse BUrn Diagnostic System (FIRE-BUDS)
第一响应烧伤诊断系统 (FIRE-BUDS)
  • 批准号:
    10581541
  • 财政年份:
    2022
  • 资助金额:
    $ 14.27万
  • 项目类别:
Pyroptosis is a Trial-by-Fire Program
细胞焦亡是一个试炼程序
  • 批准号:
    10796433
  • 财政年份:
    2022
  • 资助金额:
    $ 14.27万
  • 项目类别:
Data-Driven Wildland Fire Science with Applications to Fire Management Systems
数据驱动的荒地火灾科学及其在火灾管理系统中的应用
  • 批准号:
    RGPIN-2021-03920
  • 财政年份:
    2022
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Discovery Grants Program - Individual
Physics-aware machine learning for data-driven fire risk prediction
用于数据驱动的火灾风险预测的物理感知机器学习
  • 批准号:
    DP220100795
  • 财政年份:
    2022
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了