THE EVOLUTION OF GLOBAL FLOOD HAZARD AND RISK [EVOFLOOD]

全球洪水灾害和风险的演变 [EVOFLOOD]

基本信息

  • 批准号:
    NE/S015817/1
  • 负责人:
  • 金额:
    $ 87.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Flooding is the deadliest and most costly natural hazard on the planet, affecting societies across the globe. Nearly one billion people are exposed to the risk of flooding in their lifetimes and around 300 million are impacted by floods in any given year. The impacts on individuals and societies are extreme: each year there are over 6,000 fatalities and economic losses exceed US$60 billion. These problems will become much worse in the future. There is now clear consensus that climate change will, in many parts of the globe, cause substantial increases in the frequency of occurrence of extreme rainfall events, which in turn will generate increases in peak flood flows and therefore flood vast areas of land. Meanwhile, societal exposure to this hazard is compounded still further as a result of population growth and encroachment of people and key infrastructure onto floodplains. Faced with this pressing challenge, reliable tools are required to predict how flood hazard and exposure will change in the future. Existing state-of-the-art Global Flood Models (GFMs) are used to simulate the probability of flooding across the Earth, but unfortunately they are highly constrained by two fundamental limitations. First, current GFMs represent the topography and roughness of river channels and floodplains in highly simplified ways, and their relatively low resolution inadequately represents the natural connectivity between channels and floodplains. This restricts severely their ability to predict flood inundation extent and frequency, how it varies in space, and how it depends on flood magnitude. The second limitation is that current GFMs treat rivers and their floodplains essentially as 'static pipes' that remain unchanged over time. In reality, river channels evolve through processes of erosion and sedimentation, driven by the impacts of diverse environmental changes (e.g., climate and land use change, dam construction), and leading to changes in channel flow conveyance capacity and floodplain connectivity. Until GFMs are able to account for these changes they will remain fundamentally unsuitable for predicting the evolution of future flood hazard, understanding its underlying causes, or quantifying associated uncertainties. To address these issues we will develop an entirely new generation of Global Flood Models by: (i) using Big Data sets and novel methods to enhance substantially their representation of channel and floodplain morphology and roughness, thereby making GFMs more morphologically aware; (ii) including new approaches to representing the evolution of channel morphology and channel-floodplain connectivity; and (iii) combining these developments with tools for projecting changes in catchment flow and sediment supply regimes over the 21st century. These advances will enable us to deliver new understanding on how the feedbacks between climate, hydrology, and channel morphodynamics drive changes in flood conveyance and future flooding. Moreover, we will also connect our next generation GFM with innovative population models that are based on the integration of satellite, survey, cell phone and census data. We will apply the coupled model system under a range of future climate, environmental and societal change scenarios, enabling us to fully interrogate and assess the extent to which people are exposed, and dynamically respond, to evolving flood hazard and risk. Overall, the project will deliver a fundamental change in the quantification, mapping and prediction of the interactions between channel-floodplain morphology and connectivity, and flood hazard across the world's river basins. We will share models and data on open source platforms. Project outcomes will be embedded with scientists, global numerical modelling groups, policy-makers, humanitarian agencies, river basin stakeholders, communities prone to regular or extreme flooding, the general public and school children.
洪水是地球上最致命、代价最高的自然灾害,影响着地球仪的各个社会。近10亿人在其一生中面临洪水风险,每年约有3亿人受到洪水影响。对个人和社会的影响是极端的:每年有6,000多人死亡,经济损失超过600亿美元。这些问题将来会变得更糟。现在有一个明确的共识,即气候变化将在地球仪的许多地方造成极端降雨事件发生频率的大幅增加,这反过来又将导致洪水峰值的增加,从而淹没大片土地。与此同时,由于人口增长以及人口和关键基础设施对洪泛区的侵蚀,社会面临的这一危险进一步加剧。面对这一紧迫的挑战,需要可靠的工具来预测未来洪水灾害和风险的变化。现有的最先进的全球洪水模型(GFM)用于模拟全球洪水的概率,但不幸的是,它们受到两个基本限制的高度约束。首先,目前的GFM代表地形和粗糙度的河道和洪泛区高度简化的方式,其相对较低的分辨率不足以代表渠道和洪泛区之间的自然连通性。这严重限制了他们预测洪水淹没范围和频率的能力,它如何在空间上变化,以及它如何取决于洪水的大小。第二个限制是,目前的GFMs处理河流及其洪泛区基本上是“静态管道”,随着时间的推移保持不变。实际上,河道是在各种环境变化(例如,气候和土地利用变化、大坝建设),并导致河道水流输送能力和洪泛区连通性的变化。在GFM能够解释这些变化之前,它们从根本上仍然不适合预测未来洪水灾害的演变,了解其根本原因,或量化相关的不确定性。为了解决这些问题,我们将通过以下方式开发全新一代的全球洪水模型:(i)使用大数据集和新方法,大幅增强其对河道和洪泛区形态和粗糙度的表示,从而使GFM在形态上更加敏感;(ii)包括表示河道形态和河道-洪泛区连通性演变的新方法;以及(iii)将这些发展与预测世纪流域水流和沉积物供应状况变化的工具相结合。这些进展将使我们能够对气候,水文和通道形态动力学之间的反馈如何驱动洪水输送和未来洪水的变化提供新的理解。此外,我们还将把我们的下一代GFM与基于卫星、调查、手机和人口普查数据整合的创新人口模型联系起来。我们将在一系列未来气候,环境和社会变化情景下应用耦合模型系统,使我们能够充分询问和评估人们暴露的程度,并动态应对不断变化的洪水灾害和风险。总的来说,该项目将在世界河流流域的河道-洪泛区形态和连通性以及洪水灾害之间的相互作用的量化、绘图和预测方面带来根本性的变化。我们将在开源平台上共享模型和数据。项目成果将嵌入科学家、全球数字建模小组、决策者、人道主义机构、河流流域利益攸关方、经常或极端洪水易发社区、公众和学童。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Beyond just floodwater
不仅仅是洪水
  • DOI:
    10.1038/s41893-022-00929-1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    27.6
  • 作者:
    Best J
  • 通讯作者:
    Best J
Global scale evaluation of precipitation datasets for hydrological modelling
用于水文建模的降水数据集的全球尺度评估
  • DOI:
    10.5194/hess-2023-251
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gebrechorkos S
  • 通讯作者:
    Gebrechorkos S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Darby其他文献

Regionally-extensive ejecta layer of the Australian tektite strewn-field: the MIS 20 large meteorite impact in Indochina
澳大利亚玻璃陨石散布场的区域性喷射层:印度支那的 MIS 20 大型陨石撞击
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul A. Carling;Toshihiro Tada;Ryuji Tada;Wickanet Songtham;Alan Cresswell;David Sanderson;Naomi Porat;Jaroon Duangkrayom;Luba Meshkova;Ian Croudace;Stephen Darby;Xuanmei Fan
  • 通讯作者:
    Xuanmei Fan
A threshold in submarine channel curvature explains erosion rate and type
  • DOI:
    10.1016/j.epsl.2024.118953
  • 发表时间:
    2024-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Zaki Zulkifli;Michael A. Clare;Maarten Heijnen;D.Gwyn Lintern;Cooper Stacey;Peter J. Talling;Matthieu J.B. Cartigny;Timothy A. Minshull;Hector Marin Moreno;Jeffrey Peakall;Stephen Darby
  • 通讯作者:
    Stephen Darby
How to promote sustainability? The challenge of strategic spatial planning in the Vietnamese Mekong Delta
如何促进可持续发展?
Working with wood in rivers in the Western United States
在美国西部的河流中处理木材
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Annie Ockelford;Ellen Wohl;V. Ruiz‐Villanueva;Francesco Comiti;H. Piégay;Stephen Darby;Dan Parsons;S. Yochum;Joshua M. Wolstenholme;D. White;Hiromi Uno;Shayla P. Triantafillou;Travis Stroth;Tom Smrdel;Daniel N. Scott;Julianne E. Scamardo;James Rees;S. Rathburn;Ryan R. Morrison;David Milan;Anna Marshall;K. Lininger;John T. Kemper;M. Karpack;Taylor Johaneman;Emily P. Iskin;Javier Gibaja del Hoyo;B. Hortobágyi;S. Hinshaw;Jared Heath;Tracy Emmanuel;Sarah B. Dunn;Nicholas Christensen;Johannes Beeby;Julie Ash;Ethan Ader;Janbert Aarnink
  • 通讯作者:
    Janbert Aarnink

Stephen Darby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Darby', 18)}}的其他基金

VIET NAM: Slow Onset Hazard Interactions with Enhanced Drought and Flood Extremes in an At-Risk Mega-Delta
越南:在危险的巨型三角洲地区,缓慢发生的灾害与干旱和洪水极端事件的相互作用
  • 批准号:
    NE/S002847/1
  • 财政年份:
    2019
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Research Grant
Deciphering the dominant drivers of contemporary relative sea-level change: Analysing sediment deposition and subsidence in a vulnerable mega-delta
解读当代相对海平面变化的主要驱动因素:分析脆弱巨型三角洲的沉积物沉积和沉降
  • 批准号:
    NE/P008100/1
  • 财政年份:
    2017
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Research Grant
Sustainable Intensification of Rice Agriculture in Vulnerable Mega-Deltas: A Global Challenge
脆弱三角洲地区水稻农业的可持续集约化:全球挑战
  • 批准号:
    BB/P022693/1
  • 财政年份:
    2017
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Research Grant
Climatic and Autogenic Controls on the Morphodynamics of Mega-Rivers: Modelling Sediment Flux in the Alluvial Transfer Zone
巨型河流形态动力学的气候和自生控制:冲积转移带沉积物通量建模
  • 批准号:
    NE/J021970/1
  • 财政年份:
    2012
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Research Grant
Flow dynamics and sedimentation in an active submarine channel: a process-product approach
活跃海底通道中的流动动力学和沉积:过程-产品方法
  • 批准号:
    NE/F020120/1
  • 财政年份:
    2010
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Research Grant
The Characteristics of Turbulent Flows on Forested Floodplains
森林漫滩上湍流的特征
  • 批准号:
    NE/E009832/1
  • 财政年份:
    2007
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Research Grant

相似国自然基金

磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
  • 批准号:
    40536030
  • 批准年份:
    2005
  • 资助金额:
    120.0 万元
  • 项目类别:
    重点项目

相似海外基金

Enhancing the Accuracy and Interpretability of Global Flood Models with AI: Development of a Physics-Guided Deep Learning Model Considering River Network Topology
利用人工智能提高全球洪水模型的准确性和可解释性:考虑河网拓扑的物理引导深度学习模型的开发
  • 批准号:
    24K17353
  • 财政年份:
    2024
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
THE EVOLUTION OF GLOBAL FLOOD HAZARD AND RISK [EVOFLOOD]
全球洪水灾害和风险的演变 [EVOFLOOD]
  • 批准号:
    NE/S015795/2
  • 财政年份:
    2022
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Research Grant
THE EVOLUTION OF GLOBAL FLOOD HAZARD AND RISK
全球洪水灾害和风险的演变
  • 批准号:
    NE/S015639/1
  • 财政年份:
    2021
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Research Grant
THE EVOLUTION OF GLOBAL FLOOD HAZARD AND RISK [EVOFLOOD]
全球洪水灾害和风险的演变 [EVOFLOOD]
  • 批准号:
    NE/S015612/1
  • 财政年份:
    2021
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Research Grant
THE EVOLUTION OF GLOBAL FLOOD HAZARD AND RISK [EVOFLOOD]
全球洪水灾害和风险的演变 [EVOFLOOD]
  • 批准号:
    NE/S015655/1
  • 财政年份:
    2021
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Research Grant
Development of high resolution global-flood forecasting system with long lead time
开发周期长的高分辨率全球洪水预报系统
  • 批准号:
    21K14386
  • 财政年份:
    2021
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
THE EVOLUTION OF GLOBAL FLOOD HAZARD AND RISK [EVOFLOOD]
全球洪水灾害和风险的演变 [EVOFLOOD]
  • 批准号:
    NE/S015795/1
  • 财政年份:
    2021
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Research Grant
THE EVOLUTION OF GLOBAL FLOOD HAZARD AND RISK [EVOFLOOD]
全球洪水灾害和风险的演变 [EVOFLOOD]
  • 批准号:
    NE/S015728/1
  • 财政年份:
    2021
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Research Grant
The Evolution of Global Flood Risk (EVOFLOOD)
全球洪水风险的演变 (EVOFLOOD)
  • 批准号:
    NE/S015590/1
  • 财政年份:
    2021
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Research Grant
THE EVOLUTION OF GLOBAL FLOOD HAZARD AND RISK [EVOFLOOD]
全球洪水灾害和风险的演变 [EVOFLOOD]
  • 批准号:
    NE/S015736/1
  • 财政年份:
    2021
  • 资助金额:
    $ 87.26万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了