Assessing Statistical models of Temporary River Intermittence for Decision makers (ASTRID)
决策者评估临时河流间歇性统计模型(ASTRID)
基本信息
- 批准号:NE/T004215/2
- 负责人:
- 金额:$ 5.94万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Temporary rivers (TRs) are dynamic features of the landscape that transition between hydrological and terrestrial states, providing a range of habitats and ecosystem services. They are important for ecological diversity, nutrient processing and water resources management and adversely impacted by the pressures of climate change and local anthropogenic activities. Despite their importance, their likely prevalence in headwaters and groundwater-fed catchments, and the role of drying as the primary determinant in ecological diversity, they are underrepresented in monitoring networks and mapping. Furthermore, where traditional datasets of gauged flows or network contraction exist, they overlook the identification of ponded water as a distinct and ecologically important habitat. The lack of data means that there is an inadequate understanding of the number of TRs in the UK, their distribution and characteristics. There is therefore a need to map the spatial extent of TRs, to quantify their behaviour in a way that is relevant for decision makers, and to promote monitoring with optimal use of resources. This project aims to address these needs with three objectives: 1) Engage stakeholders in co-designing metrics relevant for decision-makers; 2) Statistical modelling of intermittence in UK TRs through training and validating; 3) Mapping the characteristics of intermittence in UK TRs.Each objective will be delivered by a work package. In Work Package 1 (WP1) the core activity is a workshop to allow key stakeholders, most notably Environment Agency water resource hydrologists responsible for decision making on the management of TRs, to engage in the direction of the project and the detailed design of useful deliverables. A literature review to establish the state-of-the-art of modelling intermittence on TRs will be delivered as a brief synopsis. In Work Package 2 (WP2), hydrological state data in England and France, and independent variables including rainfall, geology, topography, river flow will be collected and pre-processed. Statistical models, including parametric and non-parametric approaches, for estimating metrics of intermittence identified in discussion with the stakeholders will be assessed, and uncertainty analysis conducted to assess model performance. In addressing the third objective, WP3 will explore the transferability of selected models to unmonitored catchments using sensitivity analysis. Deliverables will comprise estimated intermittence metrics for TRs throughout the UK, hierarchy maps spanning a number of confidence scenarios and a summary report of the uncertainty analysis. Knowledge exchange activities will target two distinct groups of stakeholders in regions identified by the modelling as priorities for data collection. Maps and datasets will be shared and discussed with decision makers to seek views on the next steps for TR-appropriate drought and water resource assessment. Secondly, local interest groups will be invited to engage in data collection activities using the existing University of Zurich citizen science app, CrowdWater. Two workshops, one in each priority area will take place, with morning and afternoon agendas tailored to the two groups of stakeholders. Research findings will be published in a high impact journal, and presented at two academic meetings. The first, with a national focus, will enable engagement with ecologists, hydroecologists and river managers with an interest in the study and management of TRs. The second, with an international focus, will be the General Assembly of the European Geoscience Union.
临时性河流(TRs)是景观的动态特征,在水文和陆地状态之间过渡,提供一系列栖息地和生态系统服务。它们对生态多样性、养分处理和水资源管理十分重要,并受到气候变化和当地人类活动压力的不利影响。尽管它们很重要,在水源和地下水流域很可能普遍存在,而且干旱是生态多样性的主要决定因素,但它们在监测网络和绘图中的代表性不足。此外,在传统的测量流量或网络收缩数据集存在的地方,他们忽略了识别积水作为一个独特的和生态上重要的栖息地。缺乏数据意味着对联合王国TR的数量、分布和特征了解不足。因此,有必要绘制贸易代表的空间范围图,以与决策者相关的方式量化其行为,并促进以最佳方式利用资源进行监测。该项目旨在通过三个目标来满足这些需求:1)让利益攸关方参与共同设计与决策者相关的指标; 2)通过培训和验证对联合王国登记册中的不合格率进行统计建模; 3)绘制联合王国登记册中的不合格率特征。在工作包1(WP 1)中,核心活动是一个研讨会,以使主要利益相关者,特别是负责TR管理决策的环境署水资源水文学家,参与项目的方向和有用交付成果的详细设计。一个文献综述,以建立国家的最先进的建模能力的TR将提供一个简短的概要。在工作包2(WP 2)中,将收集和预处理英国和法国的水文状态数据以及降雨、地质、地形、河流流量等自变量。将评估与利益攸关方讨论中确定的用于估计韧性指标的统计模型,包括参数和非参数方法,并进行不确定性分析以评估模型性能。在实现第三个目标时,WP 3将利用敏感性分析探讨选定模型对未监测集水区的可移植性。可验证性将包括整个英国TR的估计不确定性指标、跨越多个置信度情景的层次图和不确定性分析的总结报告。 知识交流活动将针对建模确定为数据收集优先事项的区域的两个不同的利益攸关方群体。将与决策者分享和讨论地图和数据集,以征求对适合热带雨林的干旱和水资源评估的下一步措施的意见。其次,将邀请地方利益团体利用苏黎世大学现有的公民科学应用程序CrowdWater参与数据收集活动。将举办两个讲习班,每个优先领域各一个,上午和下午的议程将专门针对两组利益攸关方。研究结果将发表在一份高影响力的期刊上,并在两次学术会议上发表。第一个项目以国家为重点,将使生态学家、水文生态学家和河流管理者能够参与TRs的研究和管理。第二个会议将是欧洲地球科学联盟大会,具有国际重点。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local and regional drivers influence how aquatic community diversity, resistance and resilience vary in response to drying
- DOI:10.1111/oik.07645
- 发表时间:2020-09
- 期刊:
- 影响因子:3.4
- 作者:Romain Sarremejane;J. England;C. Sefton;S. Parry;Michael Eastman;R. Stubbington
- 通讯作者:Romain Sarremejane;J. England;C. Sefton;S. Parry;Michael Eastman;R. Stubbington
Trends in flow intermittence for European rivers
欧洲河流流量间歇趋势
- DOI:10.1080/02626667.2020.1849708
- 发表时间:2020
- 期刊:
- 影响因子:3.5
- 作者:Tramblay Y
- 通讯作者:Tramblay Y
Reconstructing Spatiotemporal Dynamics in Hydrological State Along Intermittent Rivers
重建间歇河流水文状态的时空动态
- DOI:10.3390/w13040493
- 发表时间:2021
- 期刊:
- 影响因子:3.4
- 作者:Eastman M
- 通讯作者:Eastman M
An EU-wide citizen science network to monitor hydrological conditions in intermittent rivers and ephemeral streams
欧盟范围内的公民科学网络,用于监测间歇性河流和短暂溪流的水文状况
- DOI:10.5194/egusphere-egu2020-1790
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Sauquet E
- 通讯作者:Sauquet E
Aqua temporaria incognita
南方水草
- DOI:10.1002/hyp.13979
- 发表时间:2020
- 期刊:
- 影响因子:3.2
- 作者:Van Meerveld H
- 通讯作者:Van Meerveld H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cecilia Svensson其他文献
Oceanic drivers of UK summer droughts
英国夏季干旱的海洋驱动因素
- DOI:
10.1038/s43247-025-02367-1 - 发表时间:
2025-06-05 - 期刊:
- 影响因子:8.900
- 作者:
Amulya Chevuturi;Marilena Oltmanns;Maliko Tanguy;Ben Harvey;Cecilia Svensson;Jamie Hannaford - 通讯作者:
Jamie Hannaford
Spatio-temporal clustering of extreme floods in Great Britain
英国极端洪水时空聚集性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.5
- 作者:
G. Formetta;Cecilia Svensson;Elizabeth Stewart - 通讯作者:
Elizabeth Stewart
FAKTISK LÖN, LÖNERÄTTVISA OCH ATTITYD TILL INDIVIDUELL LÖNESÄTTNING SOM PREDIKTORER FÖR SJUKSKÖTERSKORS LÖNETILLFREDSSTÄLLELSE
FAKTISK LÖN、LÖNERÄTTVISA OCH ATTITYD TILL INDIVIDUELL LÖNESATTNING SOM PREDIKTORER FÖR SJUUKSKÖTERSKORS LÖNETILLFREDSSTIALELSE
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jessica Högberg;Cecilia Svensson - 通讯作者:
Cecilia Svensson
An experimental comparison of methods for estimating rainfall intensity-duration-frequency relations from fragmentary records
- DOI:
10.1016/j.jhydrol.2007.05.002 - 发表时间:
2007-07-20 - 期刊:
- 影响因子:
- 作者:
Cecilia Svensson;Robin T. Clarke;David A. Jones - 通讯作者:
David A. Jones
Cecilia Svensson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cecilia Svensson', 18)}}的其他基金
Assessing Statistical models of Temporary River Intermittence for Decision makers (ASTRID)
决策者评估临时河流间歇性统计模型(ASTRID)
- 批准号:
NE/T004215/1 - 财政年份:2019
- 资助金额:
$ 5.94万 - 项目类别:
Research Grant
A data-driven exploratory study of extreme events based on joint probability analysis
基于联合概率分析的数据驱动的极端事件探索性研究
- 批准号:
NE/F001118/1 - 财政年份:2007
- 资助金额:
$ 5.94万 - 项目类别:
Research Grant
A data-driven exploratory study of extreme events based on joint probability analysis
基于联合概率分析的数据驱动的极端事件探索性研究
- 批准号:
NE/F001037/1 - 财政年份:2007
- 资助金额:
$ 5.94万 - 项目类别:
Research Grant
相似海外基金
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
- 批准号:
2310450 - 财政年份:2023
- 资助金额:
$ 5.94万 - 项目类别:
Standard Grant
Integrated experimental and statistical tools for ultra-high-throughput spatial transcriptomics
用于超高通量空间转录组学的集成实验和统计工具
- 批准号:
10727130 - 财政年份:2023
- 资助金额:
$ 5.94万 - 项目类别:
Statistical Methods for Biomarkers Identification Using High-resolution Diffusion MRI
使用高分辨率扩散 MRI 识别生物标志物的统计方法
- 批准号:
10667994 - 财政年份:2023
- 资助金额:
$ 5.94万 - 项目类别:
Statistical and high-throughput models of enhancer function and evolution
增强子功能和进化的统计和高通量模型
- 批准号:
10846272 - 财政年份:2023
- 资助金额:
$ 5.94万 - 项目类别:
Interpretable Bayesian Non-linear statistical learning models for multi-omics data integration
用于多组学数据集成的可解释贝叶斯非线性统计学习模型
- 批准号:
10714882 - 财政年份:2023
- 资助金额:
$ 5.94万 - 项目类别:
Liver Fibrosis: Leveraging Novel Statistical Methods to Determine Optimal Screening Strategy for People Living with Type 2 Diabetes
肝纤维化:利用新的统计方法确定 2 型糖尿病患者的最佳筛查策略
- 批准号:
488421 - 财政年份:2023
- 资助金额:
$ 5.94万 - 项目类别:
Operating Grants
Spatio-temporal Chain Event Graphs for translating expert judgement into complex statistical models. (Ref:4659)
时空链事件图,用于将专家判断转化为复杂的统计模型。
- 批准号:
2859564 - 财政年份:2023
- 资助金额:
$ 5.94万 - 项目类别:
Studentship
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 5.94万 - 项目类别:
Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308679 - 财政年份:2023
- 资助金额:
$ 5.94万 - 项目类别:
Continuing Grant
Statistical and high-throughput models of enhancer function and evolution
增强子功能和进化的统计和高通量模型
- 批准号:
10846199 - 财政年份:2023
- 资助金额:
$ 5.94万 - 项目类别:














{{item.name}}会员




