MICRO-INTERACT - Laser capture micro-dissection for identification of novel interactions within the plankton that underpin marine carbon cycling

微交互 - 激光捕获微解剖,用于识别支撑海洋碳循环的浮游生物内的新型相互作用

基本信息

项目摘要

Interactions between marine organisms drive the transfer of carbon between trophic groups and ultimately determine the fate of carbon fixed by photosynthetic organisms. There is mounting evidence for a diverse array of interactions within the plankton that remain poorly characterised. For example, phytoplankton may become infected by pathogens (viruses and bacteria) or parasites (e.g. fungi), although our understanding of the extent and diversity of these interactions remains limited. Polysaccharides exuded by phytoplankton contribute to a large pool of labile carbon in the oceans, but the micro-organisms that recycle this carbon are also poorly characterised. Trophic interactions in the plankton are also difficult to assess without improved methodologies to assess gut contents or food vacuoles from predatory organisms.There is a clear need to study these diverse interactions in greater detail to improve our understanding of marine ecosystem function. However, transient interactions are often difficult to track and may be overlooked by techniques that assess bulk seawater. Direct microscopic observations of planktonic organisms is required to identify novel interactions between marine organisms, such as parasites and trophic interactions. However, to identify and study these organisms requires technically challenging and laborious picking of single cells or highly skilled tissue dissection. Fluorescence-activated cell sorting (FACS) do not allow visualisation of target cells and therefore cannot be easily linked to in situ observations and cannot be used to isolate novel species or interacting cells in a targeted manner (e.g. less abundant species or infected cells within a population) unless these cell types can be clearly discriminated from all of the other cells by their fluorescent properties.Improved technologies are therefore required to identify the many poorly characterised interactions within the plankton in a high throughput manner. We propose to use laser capture microdissection (LCM) for this purpose. LCM involves attaching microscopy samples to a membrane and isolating single cells and/or tissue by using a laser to cut the membrane around the cells of interest and then transfer them to a collecting vessel. The huge advantage of this approach is that it allows observed cells and tissue to be directly isolated in a simple and high-throughput manner. Harvested cells or tissue can then be further characterised by genomics, proteomics or metabolite profiling approaches. Live cells may be also isolated, free from contamination, for subsequent culturing and generation of novel cell lines.While LCM has been employed primarily in biomedical applications, the technique offers huge potential for environmental research. LCM has recently been used to isolate specific cell types from a brown seaweed (Ectocarpus) for gene expression studies, to isolate unicellular algae (e.g. Euglena and Chlamydomonas) for metabolite profiling, and to isolate the gut contents of fish larvae for subsequent molecular characterisation.The application of LCM to the plankton populations will provide a step-change in our ability to characterise key processes that underpin marine ecosystems. As examples, we aim to improve understanding of parasitism within the plankton and to identify novel parasites. We will also investigate the micro-organisms that degrade organic carbon in the oceans, by isolating individual transparent exopolymeric particles (TEP) for characterisation of their associated microbiomes. LCM will also be used to isolate previously uncultured phytoplankton species.LCM offers great flexibility for multiple users and will greatly speed up processes that have previously required laborious and highly skilled techniques.
海洋生物之间的相互作用驱动了营养群之间的碳转移,并最终决定了光合作用生物固定碳的命运。越来越多的证据表明,浮游生物内部存在各种各样的相互作用,但这些相互作用的特征仍然很差。例如,浮游植物可能被病原体(病毒和细菌)或寄生虫(例如真菌)感染,尽管我们对这些相互作用的程度和多样性的了解仍然有限。浮游植物分泌的多糖为海洋中大量的不稳定碳做出了贡献,但回收这种碳的微生物也没有得到很好的描述。如果没有改进的方法来评估肠道内容物或掠食性生物的食物液泡,浮游生物的营养相互作用也很难评估。显然有必要更详细地研究这些不同的相互作用,以提高我们对海洋生态系统功能的理解。然而,瞬态相互作用通常难以跟踪,并且可能被评估散装海水的技术所忽略。浮游生物的直接显微观察需要确定海洋生物之间的新相互作用,如寄生虫和营养相互作用。然而,要识别和研究这些生物,需要在技术上具有挑战性和艰苦的单细胞采摘或高度熟练的组织解剖。荧光激活细胞分选(FACS)不允许目标细胞的可视化,因此不能轻易地与原位观察联系起来,也不能用于以靶向方式分离新物种或相互作用的细胞(例如,数量较少的物种或群体中的感染细胞),除非这些细胞类型可以通过其荧光特性与所有其他细胞明确区分开来。因此,需要改进技术以高通量的方式识别浮游生物内部许多特征不明显的相互作用。为此,我们建议使用激光捕获显微解剖(LCM)。LCM包括将显微镜样品附着在膜上,使用激光切割感兴趣细胞周围的膜,然后将其转移到收集容器中,从而分离单个细胞和/或组织。这种方法的巨大优势在于,它允许以简单和高通量的方式直接分离观察到的细胞和组织。然后,收集的细胞或组织可以通过基因组学、蛋白质组学或代谢物分析方法进一步表征。活细胞也可以分离出来,不受污染,用于后续培养和新细胞系的产生。虽然LCM主要用于生物医学应用,但该技术在环境研究方面具有巨大潜力。LCM最近被用于从褐藻(Ectocarpus)中分离特定细胞类型进行基因表达研究,用于分离单细胞藻类(例如Euglena和Chlamydomonas)进行代谢物分析,并用于分离鱼类幼虫的肠道内容物以进行随后的分子表征。将LCM应用于浮游生物种群将为我们描述支撑海洋生态系统的关键过程的能力提供一个阶段性的变化。作为例子,我们的目标是提高对浮游生物寄生的理解,并识别新的寄生虫。我们还将研究海洋中降解有机碳的微生物,通过分离单个透明外聚合物颗粒(TEP)来表征其相关微生物群。LCM还将用于分离以前未培养的浮游植物物种。LCM为多个用户提供了极大的灵活性,并将大大加快以前需要费力和高技能技术的流程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Glen Wheeler其他文献

The emp/em-elastic flow for planar closed curves with constant parametrization
具有恒定参数化的平面闭曲线的 emp/em 弹性流
A simple but effective bushfire model: analysis and real-time simulations
简单但有效的丛林火灾模型:分析和实时模拟
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Dipierro;E. Valdinoci;Glen Wheeler;V. Wheeler
  • 通讯作者:
    V. Wheeler
Abiotic stress-induced chloroplast and cytosolic Ca2+dynamics in the green alga Chlamydomonas reinhardtii
绿藻莱茵衣藻非生物胁迫诱导的叶绿体和胞质 Ca2 动力学
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matteo Pivato;Alex Costa;Glen Wheeler;Matteo Ballottari
  • 通讯作者:
    Matteo Ballottari
CHEN'S CONJECTURE AND ε-SUPERBIHARMONIC SUBMANIFOLDS OF RIEMANNIAN MANIFOLDS
陈猜想与黎曼流形ε-超调和子流形
  • DOI:
    10.1142/s0129167x13500286
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Glen Wheeler
  • 通讯作者:
    Glen Wheeler
Convergence of Solutions to a Convective Cahn-Hilliard-Type Equation of the Sixth Order in Case of Small Deposition Rates
小沉积率情况下六阶对流 Cahn-Hilliard 型方程解的收敛性

Glen Wheeler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Glen Wheeler', 18)}}的其他基金

NSFGEO-NERC: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
  • 批准号:
    NE/V013343/1
  • 财政年份:
    2021
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Research Grant
Assessing how cell size constrains carbon uptake in diatoms using direct measurements of cell surface carbonate chemistry
通过直接测量细胞表面碳酸盐化学来评估细胞大小如何限制硅藻的碳吸收
  • 批准号:
    NE/T000848/1
  • 财政年份:
    2020
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Research Grant
NSFGEO-NERC An unexpected requirement for silicon in coccolithophore calcification: ecological and evolutionary implications.
NSFGEO-NERC 颗石藻钙化过程中对硅的意外需求:生态和进化影响。
  • 批准号:
    NE/N011708/1
  • 财政年份:
    2016
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Research Grant
The role of ciliary Ca2+ signalling in the regulation of intraflagellar transport
纤毛 Ca2 信号传导在鞭毛内运输调节中的作用
  • 批准号:
    BB/M02508X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Research Grant
H+ fluxes in phytoplankton - a mechanistic and modelling study of their physiological roles and impact upon community responses to ocean acidification
浮游植物中的 H 通量 - 其生理作用及其对海洋酸化群落反应影响的机制和模型研究
  • 批准号:
    NE/J021296/1
  • 财政年份:
    2012
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332661
  • 财政年份:
    2024
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Standard Grant
Towards a cognitive process model of how attention and choice interact
建立注意力和选择如何相互作用的认知过程模型
  • 批准号:
    DP240102605
  • 财政年份:
    2024
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Discovery Projects
LTREB: How does inter-annual variation in rainfall interact with soil fertility and chronic disruption of soil moisture dynamics to alter soil C cycling in tropical forests?
LTREB:降雨量的年际变化如何与土壤肥力和土壤湿度动态的长期破坏相互作用,从而改变热带森林的土壤碳循环?
  • 批准号:
    2332006
  • 财政年份:
    2024
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332662
  • 财政年份:
    2024
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Standard Grant
RaMP: STEGG-INTERACT: Southeast Texas Evolutionary Genetics and Genomics INTEgrative Research and Collaborative Training
RaMP:STEGG-INTERACT:德克萨斯州东南部进化遗传学和基因组学综合研究和协作培训
  • 批准号:
    2319694
  • 财政年份:
    2023
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Standard Grant
SCC-PG: Towards A User-Centered and Equity-Aware Micromobility Sharing Co-Design Network to Interact with A Distressed Municipality
SCC-PG:建立一个以用户为中心、具有公平意识的微交通共享协同设计网络,与陷入困境的城市进行互动
  • 批准号:
    2303575
  • 财政年份:
    2023
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Standard Grant
The Human in the Avatar - an investigation into how tracking technologies could change the way we embody and interact in Social VR applications
《阿凡达》中的人类——追踪技术如何改变我们在社交 VR 应用程序中体现和互动的方式的调查
  • 批准号:
    2892658
  • 财政年份:
    2023
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Studentship
The Intermountain West-Atlantic Center (InterACT) for the APS Phenotyping Consortium
APS 表型联盟的山间西大西洋中心 (InterACT)
  • 批准号:
    10649343
  • 财政年份:
    2023
  • 资助金额:
    $ 37.35万
  • 项目类别:
Learning how DNA and proteins interact through experiments and AI
通过实验和人工智能了解 DNA 和蛋白质如何相互作用
  • 批准号:
    2871262
  • 财政年份:
    2023
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Studentship
Pheromones, Pathogens and Pesticides: How do these interact to affect the health and productivity of social and solitary bees?
信息素、病原体和杀虫剂:它们如何相互作用来影响群居和独居蜜蜂的健康和生产力?
  • 批准号:
    2887261
  • 财政年份:
    2023
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了