Assessing how cell size constrains carbon uptake in diatoms using direct measurements of cell surface carbonate chemistry

通过直接测量细胞表面碳酸盐化学来评估细胞大小如何限制硅藻的碳吸收

基本信息

项目摘要

The diatoms are a group of unicellular algae that represent some of the most important photosynthetic organisms on our planet. Diatoms are particularly abundant in nutrient rich coastal regions where they form the base of the food web, supporting fishing and seafood industries. It is estimated that diatoms contribute up to 20 % of global photosynthesis. It is therefore surprising that there are major uncertainties relating to the form of carbon taken up by diatoms and how these mechanisms are influenced by the size of the cell.Diatoms range from very small to very large (5-200 micrometre diameter) and can even form colonies, in the form of chains of cells linked together. This huge diversity in size has a major influence on the ability of each species to acquire nutrients from its environment, with the supply to larger species potentially limited by their diffusive boundary layer. Understanding how cell size constrains nutrient acquisition is therefore central to our understanding of diatom ecology and the distribution of different species, although direct measurements of the diffusive boundary layer around cells are lacking.Although seawater contains a plentiful supply of dissolved inorganic carbon, only a small proportion of this is present as carbon dioxide (CO2). The supply of CO2 to the cell by diffusion is therefore not sufficient to support the high rates of photosynthesis observed in diatoms. This problem is much greater in large species, due to the significant diffusive boundary layer around the cell surface. Diatoms, and other marine phytoplankton, therefore have to utilise the pool of bicarbonate (HCO3-), either by actively transporting it across the membrane or by using an enzyme (extracellular carbonic anhydrase) to catalyse its conversion to CO2, which can then diffuse across the membrane. However, it is technically difficult to measure the proportion of carbon taken up by these different mechanisms and different diatom species show considerable variability. Moreover, the role of the enzyme extracellular carbonic anhydrase has been much disputed. Because of this uncertainty, we do not have a mechanistic understanding of how changes in CO2 supply can influence the composition of diatom communities. With the concentration of CO2 in seawater predicted to change dramatically in the coming centuries, this uncertainty hampers our ability to predict how different species may respond to the changing availability of CO2. Improved knowledge of the microenvironment around diatom cells is necessary if we are to understand how they acquire carbon from seawater. We have developed tiny ion-selective microelectrodes that can be placed at the surface of a single diatom cell. By measuring pH and carbonate (CO32-), we can calculate fluxes of carbon across the membrane and estimate to what extent the supply of CO2 to the cell surface may be limiting.This project will use these new techniques to address some of the major questions relating to carbon acquisition by diatoms. We wish to examine the extent to which CO2 supply is limiting to cells of different sizes and examine how mechanisms of carbon uptake are adjusted to cope with changes in carbon supply (e.g. elevated CO2) or carbon demand (e.g. a greater rate of carbon fixation is needed at high light). We will also examine whether the supply of CO2 influences the ability of certain species to form chains, in order to understand the environments where we might expect these species to be successful. These studies using microelectrodes will be complemented by a molecular genetic approach to study to the role of the enzyme, extracellular carbonic anhydrase, which appears to play a critical role in the supply of CO2 to some diatoms. Finally, we will also examine natural populations of diatoms to see how they are influenced by changes in the availability of carbon dioxide throughout the progression of a typical diatom bloom.
硅藻是一组单细胞藻类,代表着地球上一些最重要的光合作用生物。硅藻在营养丰富的沿海地区特别丰富,在那里它们构成食物网的基础,支持渔业和海鲜产业。据估计,硅藻对全球光合作用的贡献高达20%。因此,令人惊讶的是,与硅藻吸收碳的形式以及这些机制如何受到细胞大小的影响有关的主要不确定性。硅藻从很小到很大(直径5-200微米)不等,甚至可以形成连接在一起的细胞链的菌落。这种巨大的大小差异对每个物种从其环境中获取营养的能力产生了重大影响,对较大物种的供应可能受到其扩散边界层的限制。因此,了解细胞大小如何限制营养物质的获取,对于我们理解硅藻生态和不同物种的分布是至关重要的,尽管对细胞周围扩散边界层的直接测量是缺乏的。尽管海水中含有大量的溶解无机碳,但其中只有一小部分以二氧化碳(CO2)的形式存在。因此,通过扩散向细胞提供二氧化碳不足以支持硅藻中观察到的高光合作用速率。这一问题在大物种中更为严重,因为细胞表面周围存在显著的扩散边界层。因此,硅藻和其他海洋浮游植物必须利用碳酸氢盐(HCO3-),要么主动地将其跨膜运输,要么使用一种酶(胞外碳酸氢酶)催化其转化为二氧化碳,然后二氧化碳可以扩散到膜上。然而,技术上很难测量这些不同机制所占的碳比例,而且不同种类的硅藻表现出相当大的差异性。此外,胞外碳酸酐酶的作用一直存在很大争议。由于这种不确定性,我们对二氧化碳供应的变化如何影响硅藻群落的组成没有机械性的理解。由于预计未来几个世纪海水中的二氧化碳浓度将发生巨大变化,这种不确定性阻碍了我们预测不同物种如何应对二氧化碳有效性变化的能力。如果我们要了解硅藻细胞是如何从海水中获得碳的,那么改善硅藻细胞周围的微环境是必要的。我们已经开发出微小的离子选择性微电极,可以放置在单个硅藻细胞的表面。通过测量pH值和碳酸盐(CO32-),我们可以计算跨膜的碳通量,并估计二氧化碳供应到细胞表面的限制程度。这个项目将使用这些新技术来解决与硅藻获取碳有关的一些主要问题。我们希望研究二氧化碳供应在多大程度上限制了不同大小的细胞,并研究了如何调整碳吸收机制以应对碳供应(例如二氧化碳增加)或碳需求(例如在强光下需要更高的固碳速率)的变化。我们还将研究二氧化碳的供应是否会影响某些物种形成链的能力,以了解我们可能期望这些物种成功的环境。这些使用微电极的研究将得到分子遗传学方法的补充,以研究胞外碳酸酐酶的作用,该酶似乎在向一些硅藻供应二氧化碳方面发挥关键作用。最后,我们还将研究硅藻的自然种群,以了解在典型的硅藻水华的发展过程中,二氧化碳可用性的变化如何影响它们。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The requirement for external carbonic anhydrase in diatoms is influenced by the supply and demand for dissolved inorganic carbon
  • DOI:
    10.1111/jpy.13416
  • 发表时间:
    2023-12-21
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Keys,Matthew;Hopkinson,Brian;Wheeler,Glen L.
  • 通讯作者:
    Wheeler,Glen L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Glen Wheeler其他文献

The emp/em-elastic flow for planar closed curves with constant parametrization
具有恒定参数化的平面闭曲线的 emp/em 弹性流
A simple but effective bushfire model: analysis and real-time simulations
简单但有效的丛林火灾模型:分析和实时模拟
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Dipierro;E. Valdinoci;Glen Wheeler;V. Wheeler
  • 通讯作者:
    V. Wheeler
Abiotic stress-induced chloroplast and cytosolic Ca2+dynamics in the green alga Chlamydomonas reinhardtii
绿藻莱茵衣藻非生物胁迫诱导的叶绿体和胞质 Ca2 动力学
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matteo Pivato;Alex Costa;Glen Wheeler;Matteo Ballottari
  • 通讯作者:
    Matteo Ballottari
CHEN'S CONJECTURE AND ε-SUPERBIHARMONIC SUBMANIFOLDS OF RIEMANNIAN MANIFOLDS
陈猜想与黎曼流形ε-超调和子流形
  • DOI:
    10.1142/s0129167x13500286
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Glen Wheeler
  • 通讯作者:
    Glen Wheeler
Convergence of Solutions to a Convective Cahn-Hilliard-Type Equation of the Sixth Order in Case of Small Deposition Rates
小沉积率情况下六阶对流 Cahn-Hilliard 型方程解的收敛性

Glen Wheeler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Glen Wheeler', 18)}}的其他基金

NSFGEO-NERC: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
  • 批准号:
    NE/V013343/1
  • 财政年份:
    2021
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Research Grant
MICRO-INTERACT - Laser capture micro-dissection for identification of novel interactions within the plankton that underpin marine carbon cycling
微交互 - 激光捕获微解剖,用于识别支撑海洋碳循环的浮游生物内的新型相互作用
  • 批准号:
    NE/T009195/1
  • 财政年份:
    2019
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Research Grant
NSFGEO-NERC An unexpected requirement for silicon in coccolithophore calcification: ecological and evolutionary implications.
NSFGEO-NERC 颗石藻钙化过程中对硅的意外需求:生态和进化影响。
  • 批准号:
    NE/N011708/1
  • 财政年份:
    2016
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Research Grant
The role of ciliary Ca2+ signalling in the regulation of intraflagellar transport
纤毛 Ca2 信号传导在鞭毛内运输调节中的作用
  • 批准号:
    BB/M02508X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Research Grant
H+ fluxes in phytoplankton - a mechanistic and modelling study of their physiological roles and impact upon community responses to ocean acidification
浮游植物中的 H 通量 - 其生理作用及其对海洋酸化群落反应影响的机制和模型研究
  • 批准号:
    NE/J021296/1
  • 财政年份:
    2012
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Continuing Grant
Organelle teamwork: understanding how peroxisomes and mitochondria communicate in neuronal cell function
细胞器团队合作:了解过氧化物酶体和线粒体在神经细胞功能中如何沟通
  • 批准号:
    BB/Z514767/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Fellowship
Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
  • 批准号:
    10750765
  • 财政年份:
    2024
  • 资助金额:
    $ 70.9万
  • 项目类别:
Defining how cells relay mechanical signals to changes in cell architecture
定义细胞如何将机械信号传递给细胞结构的变化
  • 批准号:
    DP240103259
  • 财政年份:
    2024
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Discovery Projects
Redefining how T cell recognition drives T cell activation
重新定义 T 细胞识别如何驱动 T 细胞激活
  • 批准号:
    DE230101012
  • 财政年份:
    2023
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Discovery Early Career Researcher Award
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Operating Grants
How do you build an astrocyte?
如何构建星形胶质细胞?
  • 批准号:
    10646059
  • 财政年份:
    2023
  • 资助金额:
    $ 70.9万
  • 项目类别:
Towards the understanding of how chaperones function and prevent amyloidogenic diseases
了解伴侣如何发挥作用并预防淀粉样蛋白形成疾病
  • 批准号:
    10734397
  • 财政年份:
    2023
  • 资助金额:
    $ 70.9万
  • 项目类别:
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
  • 批准号:
    10722452
  • 财政年份:
    2023
  • 资助金额:
    $ 70.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了