Using plant hydraulic scaling to predict the drought vulnerability of the world's tallest tropical trees
利用植物水力缩放来预测世界上最高的热带树木的干旱脆弱性
基本信息
- 批准号:NE/V00008X/1
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Tropical rainforests are one of the planets most important stores of carbon, as well as being essential to water cycling at large scales. Within tropical forests the largest trees, with diameters exceeding 70 cm, store between 25-45% of the carbon, yet represent <4% of the total number of trees. These large trees also transport disproportionately more water than smaller individuals do, making them a conservation priority for the future. Large tropical trees are likely to be very old, with many between 200-500 years and some estimated to be >1400 years old. Therefore, they have survived historical extreme climate events, including drought. Yet, recent evidence suggests water transport limitations are likely to make larger trees more vulnerable to the more extreme, more frequent drought events, which are predicted for the future. However, we still do not understand how large trees manage to overcome the huge resistances associated with transporting water such large vertical distances, against gravity, which substantially increase the hydraulic stress the tree experiences in a given climate. This information is essential to understanding how vulnerable these iconic tropical trees will be to the predicted future increases in drought frequency and intensity. Large trees can minimise the effects of increasing resistance to water transport with height through changing multiple leaf and stem hydraulic traits vertically through their stem and canopy. However, data on these vertical changes are rare and do not exist for tropical trees. Consequently, there is limited knowledge concerning whether trees can or cannot compensate for the negative effects being taller has on their water transport capacity and therefore their vulnerability to future drought events.In this project we will combine novel measurements of vertical changes in tree anatomical, structural and hydraulic properties on the world's tallest tropical trees, in two different tropical regions - Amazonia and Borneo - to achieve the following aims:Aim 1: Determine how vertical changes in tree hydraulic and anatomical traits regulate the capacity of tall trees to maintain water transport to their leaves under different environmental conditions.Aim 2: Determine if key structural and architectural properties of tropical trees control the vertical gradients of plant hydraulic and anatomical properties. Aim 3: Determine how accounting for vertical gradients in hydraulic properties in tall tropical trees alters predictions of tropical forest water and carbon cycling.To achieve these aims we will study the tallest tropical trees in the world. This will include trees in Amazonia discovered in 2019 that reach 88.5 m tall, ~30m taller than any other tree recorded in the neotropics. We will compare these to equivalent sized trees in Borneo from the dipterocarp family, the family containing the tallest angiosperm species in the world. On these trees we will measure vertical gradients in hydraulic and anatomical traits on 60 trees varying in height from 20-90 m. These trees will come from eight dominant species in Brazil and Borneo, allowing us to contrast the hydraulic adaptations of trees species from drier, more seasonal climates (Brazil), to those of species that have evolved in wetter, a-seasonal climates (Borneo). To realise the three aims above, our novel vertical hydraulic trait measurements will be combined with measures of whole-tree water transport and storage, tree architectural data derived from state-of-the-art ground-based laser scanning and vegetation models. Combining these techniques will allow us to make a step-change in our current understanding of the limits to water transport in the world's tallest tropical trees and the impact this may have on carbon and water cycling under future climate scenarios.
热带雨林是地球上最重要的碳储存地之一,也是大规模水循环的必要条件。在热带森林中,直径超过70厘米的最大树木储存了25-45%的碳,但占树木总数的不到4%。这些大树也比较小的个体运输更多的水,使它们成为未来的保护重点。大型热带树木可能非常古老,许多在200-500岁之间,有些估计超过1400岁。因此,它们经受住了历史上的极端气候事件,包括干旱。然而,最近的证据表明,水运输的限制可能使较大的树木更容易受到更极端,更频繁的干旱事件的影响,这是预测未来的。然而,我们仍然不明白大型树木如何克服与运输水如此大的垂直距离相关的巨大阻力,对抗重力,这大大增加了树木在给定气候下所经历的水力应力。这些信息对于了解这些标志性的热带树木在预测未来干旱频率和强度增加时的脆弱程度至关重要。大型树木可以通过改变多个叶和茎的水力特性,垂直通过他们的茎和冠层,最大限度地减少随着高度增加对水分运输的阻力的影响。然而,这些垂直变化的数据是罕见的,不存在的热带树木。因此,关于树木是否能够或不能补偿其水分运输能力的负面影响以及未来干旱事件的脆弱性的知识有限。在这个项目中,我们将联合收割机结合对世界上最高的热带树木的解剖学,结构和水力特性的垂直变化的新测量,在两个不同的热带地区-亚马逊河和婆罗洲-实现以下目标:目标1:确定树木水力和解剖特征的垂直变化如何调节高大树木在不同环境条件下维持水分运输到叶片的能力。目标2:确定热带树木的关键结构和建筑特性是否控制植物水力和解剖特性的垂直梯度。目标三:确定热带高大树木水力特性的垂直梯度如何改变热带森林水和碳循环的预测。为了实现这些目标,我们将研究世界上最高的热带树木。这将包括2019年在亚马逊发现的高达88.5米的树木,比新热带地区记录的任何其他树木高约30米。我们将把这些与婆罗洲的龙脑香科的同等大小的树木进行比较,龙脑香科是世界上最高的被子植物。在这些树木上,我们将测量60棵高度从20-90米不等的树木的水力和解剖特征的垂直梯度。这些树木将来自巴西和婆罗洲的八个主要物种,使我们能够对比树木物种从干燥,季节性气候(巴西)到在潮湿,季节性气候(婆罗洲)中进化的物种的水力适应。为了实现上述三个目标,我们新颖的垂直水力特性测量将与全树水分运输和储存的测量,来自最先进的地面激光扫描和植被模型的树木建筑数据相结合。结合这些技术将使我们能够逐步改变我们目前对世界上最高的热带树木的水运输限制的理解,以及这可能对未来气候情景下的碳和水循环产生的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lindsay Banin其他文献
Lindsay Banin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lindsay Banin', 18)}}的其他基金
NI: FOR-RESTOR - A network for evidence-based tropical FORest RESTORation
NI:FOR-RESTOR - 循证热带森林恢复网络
- 批准号:
NE/T005092/1 - 财政年份:2019
- 资助金额:
$ 2万 - 项目类别:
Research Grant
Seeing the fruit for the trees in Borneo: responding to an unpredictable community-level fruiting event
婆罗洲见树见果:应对不可预测的社区层面结果事件
- 批准号:
NE/T006552/2 - 财政年份:2019
- 资助金额:
$ 2万 - 项目类别:
Research Grant
Seeing the fruit for the trees in Borneo: responding to an unpredictable community-level fruiting event
婆罗洲见树见果:应对不可预测的社区层面结果事件
- 批准号:
NE/T006552/1 - 财政年份:2019
- 资助金额:
$ 2万 - 项目类别:
Research Grant
相似国自然基金
Molecular Plant
- 批准号:31224801
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Molecular Plant
- 批准号:31024802
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
不同栽培环境条件下不同基因型牡丹根部细菌种群多样性特征
- 批准号:31070617
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
Journal of Integrative Plant Biology
- 批准号:31024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
植物病毒壳体"智能"纳米载体靶向肿瘤细胞的研究
- 批准号:30973685
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
南美蟛蜞菊入侵对土壤微生物的影响及反馈作用
- 批准号:30970556
- 批准年份:2009
- 资助金额:40.0 万元
- 项目类别:面上项目
弓形虫MAG嵌合型类病毒颗粒转基因植物快速高效表达技术平台的建立及其动物口服免疫机制的探索
- 批准号:30872204
- 批准年份:2008
- 资助金额:33.0 万元
- 项目类别:面上项目
梅花植株再生体系及遗传转化体系建立的研究
- 批准号:30371187
- 批准年份:2003
- 资助金额:7.0 万元
- 项目类别:面上项目
相似海外基金
New Mexico Integrative Science Program Incorporating Research in Environmental Sciences (NM-INSPIRES)
新墨西哥州综合科学计划纳入环境科学研究(NM-INSPIRES)
- 批准号:
10393297 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Using plant hydraulic scaling to predict the drought vulnerability of the world's tallest tropical trees
利用植物水力缩放来预测世界上最高的热带树木的干旱脆弱性
- 批准号:
NE/V000071/1 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Research Grant
CAREER: A cross-scale, data-efficient approach to understanding plant hydraulic regulation using optimization and maximum entropy
职业:一种跨尺度、数据高效的方法,利用优化和最大熵来理解工厂水力调节
- 批准号:
2045610 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
How do plant roots acclimate to highly concentrated salt water?
植物根部如何适应高浓度盐水?
- 批准号:
20K06312 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF Postdoctoral Fellowship in Biology FY 2019: The Genetic Architecture of Hydraulic and Whole-plant Performance Under Cold Temperatures in Sunflower
2019 财年 NSF 生物学博士后奖学金:向日葵低温下水力和全株性能的遗传结构
- 批准号:
1907338 - 财政年份:2019
- 资助金额:
$ 2万 - 项目类别:
Fellowship Award
The dynamics of embolism formation and repair in xylem conduits: from bubble scale to loss in plant hydraulic transport capacity
木质部导管中栓塞形成和修复的动力学:从气泡规模到植物水力输送能力的损失
- 批准号:
1754893 - 财政年份:2018
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: Mechanisms for the decline of leaf hydraulic conductance with dehydration, and plant and environment level impacts
合作研究:叶片水导率因脱水而下降的机制,以及植物和环境水平的影响
- 批准号:
1147057 - 财政年份:2012
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: RUI: Mechanisms for the decline of leaf hydraulic conductance with dehydration, and plant and environment level impacts
合作研究:RUI:脱水导致叶片导水率下降的机制以及植物和环境水平的影响
- 批准号:
1146514 - 财政年份:2012
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: Mechanisms for the decline of leaf hydraulic conductance with dehydration, and plant and environment level impacts
合作研究:叶片水导率因脱水而下降的机制,以及植物和环境水平的影响
- 批准号:
1147292 - 财政年份:2012
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: Mechanisms for the decline of leaf hydraulic conductance with dehydration, and plant and environment level impacts
合作研究:叶片水导率因脱水而下降的机制,以及植物和环境水平的影响
- 批准号:
1302314 - 财政年份:2012
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant