Next Generation, Physics-Inspired AI for Space Weather Forecasting
用于空间天气预报的下一代物理启发人工智能
基本信息
- 批准号:NE/W009129/1
- 负责人:
- 金额:$ 66.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Space weather describes the variability of conditions in near-Earth space. One of the primary ways in which space weather can impact society is through the generation of anomalous currents (termed Geomagnetically Induced Currents, or GICs) in power networks and pipelines on the ground. These GICs can accelerate the ageing of systems, or more critically lead to the immediate failure of components such as power transformers. This research will take a leap forward in understanding and predicting when we are at risk of suffering large GICs on the ground.GICs are driven by rapid changes in the Earth's magnetic field, and there are a range of phenomena in near-Earth space that are responsible, but one of the most important is the magnetospheric substorm. During a substorm, interactions between the magnetic field of the Earth and the incident solar wind results in the transfer of energy. This additional energy is principally stored in plasma and magnetic field energy on the nightside of a planet in a region known as the magnetotail. Energy is stored until the system reaches the limit of stability, at which point the energy is explosively released, again through the process of magnetic reconnection. This leads to observable phenomena such as the aurora. However, this process can have dire space weather consequences, causing extreme ionospheric currents and posing risks to satellites and other infrastructure, yet even our most sophisticated methods struggle to predict when it will occur.Understanding and forecasting magnetic field variability is a hugely difficult problem when the myriad of sporadic and localised processes at the start of a magnetosphere substorm are poorly understood. One of the fundamental issues is the scale of the system. The processes involved are sporadic and localised, and the domain in which they could operate is huge. The aim of this fellowship is to understand the processes and instabilities by which the magnetosphere becomes unstable, and use this to generate cutting-edge, physics-inspired space weather forecasting models.I will accurately and robustly process huge volumes of data from several missions at the Earth using 'big data' techniques to characterize and predict the conditions under which the substorm is likely to occur. I will develop Bayesian Monte Carlo methods to estimate their spatial and temporal scales and determine causality. I will then use this understanding to generate cutting-edge machine learning models of when and where substorms will occur, as well as the properties and location of the auroral oval. I will then put this together to create a physics-inspired model of forecasting geomagnetic perturbations. This is necessary to provide precise and reliable predictions of when regions are at risk of dangerous GICs. The physics-inspired process will ensure that the model extrapolations to extreme conditions are more reliable than 'black box' extrapolations.During the course of this fellowship I will collaborate with world leading experts on plasma stability (MSSL) and magnetotail dynamics (Michigan), utilizing cutting edge global models (Michigan) to inform state-of-the-art machine learning models. I will then create robust and reliable models for the benefit of stakeholders (Met Office).
空间天气描述近地空间条件的变化。空间天气影响社会的主要方式之一是通过在地面的电力网络和管道中产生异常电流(称为地磁感应电流或GIC)。这些GIC会加速系统的老化,或者更严重地导致电力变压器等组件的立即故障。这项研究将在理解和预测我们何时面临地面上遭受大规模GIC的风险方面取得飞跃。GIC是由地球磁场的快速变化驱动的,近地空间有一系列现象,但其中最重要的是磁层亚暴。在亚暴期间,地球磁场与入射太阳风之间的相互作用导致能量转移。这种额外的能量主要存储在行星背面称为磁尾区域的等离子体和磁场能量中。能量被储存,直到系统达到稳定的极限,在这一点上,能量爆炸性地释放,再次通过磁重联的过程。这就导致了极光等可观测到的现象。然而,这一过程可能会产生可怕的空间天气后果,导致极端电离层电流,并对卫星和其他基础设施构成风险,但即使是我们最先进的方法也很难预测它何时发生。当磁层亚暴开始时的无数零星和局部过程知之甚少时,理解和预测磁场变化是一个非常困难的问题。一个基本问题是系统的规模。所涉及的过程是零星的和局部的,它们可以运作的领域是巨大的。该奖学金的目的是了解磁层变得不稳定的过程和不稳定性,并利用它来生成尖端的,物理启发的空间天气预报模型。我将使用“大数据”技术准确和强大地处理来自地球上几个任务的大量数据,以描述和预测亚暴可能发生的条件。我将开发贝叶斯蒙特卡罗方法来估计其空间和时间尺度,并确定因果关系。然后,我将利用这种理解来生成尖端的机器学习模型,以确定亚暴何时何地发生,以及极光椭圆的属性和位置。然后,我将把这些放在一起,创建一个预测地磁扰动的物理模型。这对于准确可靠地预测区域何时面临危险的GIC风险是必要的。物理学启发的过程将确保模型外推到极端条件比“黑匣子”外推更可靠。在此期间,我将与世界领先的等离子体稳定性(MSSL)和磁尾动力学(密歇根州)专家合作,利用尖端的全球模型(密歇根州)为最先进的机器学习模型提供信息。然后,我将为利益相关者(英国气象局)创建强大而可靠的模型。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sudden Commencements and Geomagnetically Induced Currents in New Zealand: Correlations and Dependance
新西兰的突然开始和地磁感应电流:相关性和依赖性
- DOI:10.1029/2023sw003731
- 发表时间:2024
- 期刊:
- 影响因子:3.7
- 作者:Smith A
- 通讯作者:Smith A
Extreme Value Analysis of Ground Magnetometer Observations at Valentia Observatory, Ireland
爱尔兰瓦伦蒂亚天文台地面磁力计观测的极值分析
- DOI:10.1029/2023sw003565
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Fogg A
- 通讯作者:Fogg A
Using machine learning to diagnose relativistic electron distributions in the Van Allen radiation belts
使用机器学习来诊断范艾伦辐射带中的相对论电子分布
- DOI:10.1093/rasti/rzad035
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Killey S
- 通讯作者:Killey S
Extreme Birkeland Currents Are More Likely During Geomagnetic Storms on the Dayside of the Earth
在地球白天的地磁风暴期间更有可能出现极端伯克兰电流
- DOI:10.1029/2023ja031946
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Coxon J
- 通讯作者:Coxon J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Smith其他文献
Congo red staining in digital pathology: the "SPADA" pipeline.
数字病理学中的刚果红染色:“SPADA”管道。
- DOI:
10.1016/j.labinv.2023.100243 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
G. Cazzaniga;M. Bolognesi;Matteo Davide Stefania;Francesco Mascadri;A. Eccher;F. Alberici;Federica Mescia;Andrew Smith;F. Fraggetta;Mattia Rossi;G. Gambaro;F. Pagni;V. L’Imperio - 通讯作者:
V. L’Imperio
Pyroelectrics on purpose: A perspective on generation vs harvesting
有意的热释电:发电与收集的视角
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:4
- 作者:
B. Hanrahan;Andrew Smith;B. Bhatia - 通讯作者:
B. Bhatia
A Real-Time Algorithm for Accurate Collision Detection for Deformable Polyhedral Objects
可变形多面体物体精确碰撞检测的实时算法
- DOI:
10.1162/105474698565514 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Y. Kitamura;Andrew Smith;H. Takemura;F. Kishino - 通讯作者:
F. Kishino
Destination London: The Expansion of the Visitor Economy
伦敦目的地:游客经济的扩张
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Andrew Smith;A. Graham - 通讯作者:
A. Graham
A Symptom-Triggered Benzodiazepine Protocol Utilizing SAS and CIWA-Ar Scoring for the Treatment of Alcohol Withdrawal Syndrome in the Critically Ill
利用 SAS 和 CIWA-Ar 评分的症状触发苯二氮卓方案治疗重症患者的酒精戒断综合征
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Soumitra Sen;Phil Grgurich;A. Tulolo;Andrew Smith;Y. Lei;A. Gray;J. Dargin - 通讯作者:
J. Dargin
Andrew Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Smith', 18)}}的其他基金
Establishing a new palaeothermometer from the speleothem archive of phosphate-oxygen isotopes
利用磷酸氧同位素洞穴档案建立新的古温度计
- 批准号:
NE/X011968/1 - 财政年份:2023
- 资助金额:
$ 66.3万 - 项目类别:
Research Grant
Exploiting Chalcogen Bonding and Non-Covalent Interactions in Isochalcogenourea Catalysis: Catalyst Preparation, Mechanistic Studies and Applications
在异硫属脲催化中利用硫属键合和非共价相互作用:催化剂制备、机理研究和应用
- 批准号:
EP/T023643/1 - 财政年份:2020
- 资助金额:
$ 66.3万 - 项目类别:
Research Grant
Video-Recordings of Eyewitness Identification in Actual Cases: The Postdictive Value of Eyewitness Behaviors
实际案件中目击者识别的录像:目击者行为的事后价值
- 批准号:
2017510 - 财政年份:2020
- 资助金额:
$ 66.3万 - 项目类别:
Continuing Grant
Underpinning Mechanistic Studies of NHC-Organocatalysis: A Breslow Intermediate Reactivity Scale
NHC 有机催化的基础机制研究:Breslow 中级反应量表
- 批准号:
EP/S019359/1 - 财政年份:2019
- 资助金额:
$ 66.3万 - 项目类别:
Research Grant
RUI: Collaborative Research: Assessments and Stances Regarding the Uncertainty of (Un)Desired Outcomes
RUI:协作研究:关于(不)期望结果的不确定性的评估和立场
- 批准号:
1851766 - 财政年份:2019
- 资助金额:
$ 66.3万 - 项目类别:
Continuing Grant
NSFPLR-NERC: GHOST (Geophysical Habitat of Subglacial Thwaites)
NSFPLR-NERC:GHOST(冰下思韦特斯地球物理栖息地)
- 批准号:
NE/S006672/1 - 财政年份:2018
- 资助金额:
$ 66.3万 - 项目类别:
Research Grant
REU Site: Frontiers in Biomedical Imaging
REU 网站:生物医学成像前沿
- 批准号:
1757837 - 财政年份:2018
- 资助金额:
$ 66.3万 - 项目类别:
Standard Grant
Resource for innovation and application of genetic engineering strategies in embryonic stem cells
胚胎干细胞基因工程策略的创新和应用资源
- 批准号:
MC_UU_00016/10 - 财政年份:2017
- 资助金额:
$ 66.3万 - 项目类别:
Intramural
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
(PHYMOL) Physics, Accuracy and Machine Learning: Towards the next-generation of Molecular Potentials
(PHYMOL) 物理学、准确性和机器学习:迈向下一代分子潜力
- 批准号:
EP/X036863/1 - 财政年份:2023
- 资助金额:
$ 66.3万 - 项目类别:
Research Grant
Physics-informed and physics-constrained machine learning for next generation imaging
用于下一代成像的物理知情和物理约束的机器学习
- 批准号:
2898384 - 财政年份:2023
- 资助金额:
$ 66.3万 - 项目类别:
Studentship
Next Generation Virtual Musical Instruments: Physics-informed Neural Networks for Sound Synthesis and Digital Audio Effects
下一代虚拟乐器:用于声音合成和数字音频效果的物理信息神经网络
- 批准号:
2710512 - 财政年份:2022
- 资助金额:
$ 66.3万 - 项目类别:
Studentship
Medical physics and biomedical technology development for next generation dose measurement, optimization and computation tools
下一代剂量测量、优化和计算工具的医学物理和生物医学技术开发
- 批准号:
RGPIN-2019-05038 - 财政年份:2022
- 资助金额:
$ 66.3万 - 项目类别:
Discovery Grants Program - Individual
The next generation of hydrology-biogeochemistry modelling in Canada: A flexible approach to multi-physics, multi-chemistry, and multi-scale modelling
加拿大下一代水文-生物地球化学建模:多物理、多化学和多尺度建模的灵活方法
- 批准号:
571910-2022 - 财政年份:2022
- 资助金额:
$ 66.3万 - 项目类别:
Alliance Grants
MPS-Ascend: Probing Fundamental Physics with Next Generation Gravitational Wave Detectors
MPS-Ascend:利用下一代引力波探测器探索基础物理
- 批准号:
2213266 - 财政年份:2022
- 资助金额:
$ 66.3万 - 项目类别:
Fellowship Award
Medical physics and biomedical technology development for next generation dose measurement, optimization and computation tools
下一代剂量测量、优化和计算工具的医学物理和生物医学技术开发
- 批准号:
RGPIN-2019-05038 - 财政年份:2021
- 资助金额:
$ 66.3万 - 项目类别:
Discovery Grants Program - Individual
Research and Development of Micro Pattern Gaseous Detector using DLC for Next Generation High Luminosity Particle Physics Experiments
用于下一代高光度粒子物理实验的DLC微图案气体探测器的研发
- 批准号:
21H01111 - 财政年份:2021
- 资助金额:
$ 66.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles
经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估
- 批准号:
RGPIN-2016-03978 - 财政年份:2021
- 资助金额:
$ 66.3万 - 项目类别:
Discovery Grants Program - Individual
Modeling the physics of gas removal and star formation quenching in Local Group satellite galaxies with next-generation simulations
通过下一代模拟对本星系群卫星星系中气体去除和恒星形成淬灭的物理过程进行建模
- 批准号:
2102729 - 财政年份:2021
- 资助金额:
$ 66.3万 - 项目类别:
Fellowship Award