Video-Recordings of Eyewitness Identification in Actual Cases: The Postdictive Value of Eyewitness Behaviors
实际案件中目击者识别的录像:目击者行为的事后价值
基本信息
- 批准号:2017510
- 负责人:
- 金额:$ 38.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over 70% of DNA exonerations have been cases of mistaken eyewitness identification. Based on recommendations from eyewitness scientists, a large number of jurisdictions across the country have reformed their identification procedures to address this problem. Nevertheless, even the best lineup procedures fail to weed out all mistaken identifications. Hence, police and prosecutors still must attempt to sort between reliable identifications and unreliable identifications even when the best lineup procedures are followed. It is important to determine what variables can help police and prosecutors with this task. Postdiction variables are a particularly promising class of variables. Postdiction variables are variables that are influenced by the presence or absence of the guilty suspect in the lineup. These include eyewitness behaviors such as expressed level of confidence, the amount of time it takes the witness to make an identification decision, visible evidence of effort, verbal utterances, among others. The purpose of the present work is to examine how well postdiction variables extracted from video recordings of real-world witnesses making identification decisions can sort between reliable and unreliable identification decisions. To the extent that postdiction variables prove useful for sorting between reliable identifications and unreliable identifications, these findings would also encourage jurisdictions that are not yet video recording identification procedures to begin doing so. Indeed, only by video recording the entirety of the identification procedure can these jurisdictions ensure a complete and accurate record of these variables that can be used to sort between reliable and unreliable identifications.The goal of this research is to determine what combination of postdictors best sort between reliable eyewitness identifications and unreliable eyewitness identifications in real-world lineups. The findings will then be leveraged to develop an algorithm that police and prosecutors can use to assess the reliability of eyewitness identifications in future investigations. The District Attorney’s Office of Santa Clara County, CA and the San Jose Police Department will provide video-recordings of witnesses completing actual police lineups. Santa Clara County is unique as an early adopter of best-practice eyewitness identification procedures (a requirement for valid assessment of postdiction variables) and more recently implementing a policy of video-recording all lineups. As these videos become available, blind scorers (blind as to whether the identified person is the suspect or a filler) will assess a host of known postdiction variables. These postdiction scores will then be regressed on the outcome variable of whether the witness identified the suspect or a known-innocent filler. A critical mass of suspect identifications are likely to be culprit identifications whereas all identifications of fillers are definitive instances of mistaken identifications. Accordingly, postdiction variables that are useful for separating accurate from mistaken identifications should distinguish between suspect identifications and filler identifications. In addition to examining the predictive validity of known postdiction variables (e.g., confidence, decision time, verbal utterances), we will use an extensive coding scheme to code for numerous other eyewitness behaviors and we will examine whether these additional eyewitness behaviors can improve classification performance over and above the performance achieved with know postdiction variables.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超过70%的DNA免责案例都是错误的目击证人识别。根据目击者科学家的建议,全国许多司法管辖区已经改革了他们的鉴定程序来解决这个问题。然而,即使是最好的指认程序也不能排除所有错误的识别。因此,即使采用了最佳的指认程序,警察和检察官仍然必须努力区分可靠的指认和不可靠的指认。重要的是要确定哪些变量可以帮助警察和检察官完成这项任务。后置变量是一类特别有前途的变量。后判变量是受犯罪嫌疑人在队列中是否存在影响的变量。这些包括目击者的行为,如表达的自信程度,证人做出识别决定所需的时间,努力的可见证据,口头表达,等等。本研究的目的是研究从真实世界证人的视频记录中提取的后定位变量如何在可靠和不可靠的识别决策之间进行分类。在某种程度上,后置变量证明对区分可靠的识别和不可靠的识别是有用的,这些发现也将鼓励尚未录像识别程序的司法管辖区开始这样做。事实上,只有通过录像记录整个鉴定程序,这些司法管辖区才能确保对这些变量进行完整和准确的记录,这些变量可用于区分可靠和不可靠的鉴定。本研究的目的是确定在真实世界的阵容中,什么样的组合最适合可靠的目击者识别和不可靠的目击者识别。然后,这些发现将被用于开发一种算法,供警方和检察官在未来的调查中评估目击者指认的可靠性。加州圣克拉拉县地方检察官办公室和圣何塞警察局将提供目击者完成实际警察列队的录像。圣克拉拉县的独特之处在于,它较早地采用了最佳实践目击者识别程序(对位置变量进行有效评估的要求),最近又实施了一项对所有阵容进行录像的政策。当这些视频可用时,盲目评分者(不知道被识别的人是嫌疑人还是填充者)将评估一系列已知的定位变量。这些定位分数将被回归到结果变量是否证人识别嫌疑人或已知无辜填充。嫌疑犯识别的临界质量很可能是罪犯识别,而所有填充物的识别都是错误识别的明确实例。因此,用于区分准确识别和错误识别的后置变量应该区分可疑识别和填充识别。除了检查已知后置变量(例如,置信度,决策时间,口头话语)的预测有效性外,我们还将使用广泛的编码方案来编码许多其他目击者行为,我们将检查这些额外的目击者行为是否可以提高分类性能,超过已知后置变量所达到的性能。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Smith其他文献
Congo red staining in digital pathology: the "SPADA" pipeline.
数字病理学中的刚果红染色:“SPADA”管道。
- DOI:
10.1016/j.labinv.2023.100243 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
G. Cazzaniga;M. Bolognesi;Matteo Davide Stefania;Francesco Mascadri;A. Eccher;F. Alberici;Federica Mescia;Andrew Smith;F. Fraggetta;Mattia Rossi;G. Gambaro;F. Pagni;V. L’Imperio - 通讯作者:
V. L’Imperio
Pyroelectrics on purpose: A perspective on generation vs harvesting
有意的热释电:发电与收集的视角
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:4
- 作者:
B. Hanrahan;Andrew Smith;B. Bhatia - 通讯作者:
B. Bhatia
A Real-Time Algorithm for Accurate Collision Detection for Deformable Polyhedral Objects
可变形多面体物体精确碰撞检测的实时算法
- DOI:
10.1162/105474698565514 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Y. Kitamura;Andrew Smith;H. Takemura;F. Kishino - 通讯作者:
F. Kishino
Destination London: The Expansion of the Visitor Economy
伦敦目的地:游客经济的扩张
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Andrew Smith;A. Graham - 通讯作者:
A. Graham
A Symptom-Triggered Benzodiazepine Protocol Utilizing SAS and CIWA-Ar Scoring for the Treatment of Alcohol Withdrawal Syndrome in the Critically Ill
利用 SAS 和 CIWA-Ar 评分的症状触发苯二氮卓方案治疗重症患者的酒精戒断综合征
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Soumitra Sen;Phil Grgurich;A. Tulolo;Andrew Smith;Y. Lei;A. Gray;J. Dargin - 通讯作者:
J. Dargin
Andrew Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Smith', 18)}}的其他基金
Establishing a new palaeothermometer from the speleothem archive of phosphate-oxygen isotopes
利用磷酸氧同位素洞穴档案建立新的古温度计
- 批准号:
NE/X011968/1 - 财政年份:2023
- 资助金额:
$ 38.89万 - 项目类别:
Research Grant
Next Generation, Physics-Inspired AI for Space Weather Forecasting
用于空间天气预报的下一代物理启发人工智能
- 批准号:
NE/W009129/1 - 财政年份:2022
- 资助金额:
$ 38.89万 - 项目类别:
Fellowship
Exploiting Chalcogen Bonding and Non-Covalent Interactions in Isochalcogenourea Catalysis: Catalyst Preparation, Mechanistic Studies and Applications
在异硫属脲催化中利用硫属键合和非共价相互作用:催化剂制备、机理研究和应用
- 批准号:
EP/T023643/1 - 财政年份:2020
- 资助金额:
$ 38.89万 - 项目类别:
Research Grant
Underpinning Mechanistic Studies of NHC-Organocatalysis: A Breslow Intermediate Reactivity Scale
NHC 有机催化的基础机制研究:Breslow 中级反应量表
- 批准号:
EP/S019359/1 - 财政年份:2019
- 资助金额:
$ 38.89万 - 项目类别:
Research Grant
RUI: Collaborative Research: Assessments and Stances Regarding the Uncertainty of (Un)Desired Outcomes
RUI:协作研究:关于(不)期望结果的不确定性的评估和立场
- 批准号:
1851766 - 财政年份:2019
- 资助金额:
$ 38.89万 - 项目类别:
Continuing Grant
NSFPLR-NERC: GHOST (Geophysical Habitat of Subglacial Thwaites)
NSFPLR-NERC:GHOST(冰下思韦特斯地球物理栖息地)
- 批准号:
NE/S006672/1 - 财政年份:2018
- 资助金额:
$ 38.89万 - 项目类别:
Research Grant
REU Site: Frontiers in Biomedical Imaging
REU 网站:生物医学成像前沿
- 批准号:
1757837 - 财政年份:2018
- 资助金额:
$ 38.89万 - 项目类别:
Standard Grant
Resource for innovation and application of genetic engineering strategies in embryonic stem cells
胚胎干细胞基因工程策略的创新和应用资源
- 批准号:
MC_UU_00016/10 - 财政年份:2017
- 资助金额:
$ 38.89万 - 项目类别:
Intramural
相似海外基金
Inferring the evolution of functional connectivity over learning in large-scale neural recordings using low-tensor-rank recurrent neural networks
使用低张量秩递归神经网络推断大规模神经记录中功能连接学习的演变
- 批准号:
BB/Y513957/1 - 财政年份:2024
- 资助金额:
$ 38.89万 - 项目类别:
Research Grant
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
- 批准号:
10696649 - 财政年份:2023
- 资助金额:
$ 38.89万 - 项目类别:
Project #3 In vivo microneurography recordings of sensory afferents
项目
- 批准号:
10806549 - 财政年份:2023
- 资助金额:
$ 38.89万 - 项目类别:
Determining the circuits and signals of sleep dysfunction in Parkinson's disease through chronic intracranial recordings and closed-loop Deep Brain Stimulation
通过慢性颅内记录和闭环深部脑刺激确定帕金森病睡眠功能障碍的回路和信号
- 批准号:
10630021 - 财政年份:2023
- 资助金额:
$ 38.89万 - 项目类别:
DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
- 批准号:
10643212 - 财政年份:2023
- 资助金额:
$ 38.89万 - 项目类别:
Enhancing automated, reproducible analysis workflows and data curation for extracellular neural recordings with SpikeInterface
使用 SpikeInterface 增强细胞外神经记录的自动化、可重复分析工作流程和数据管理
- 批准号:
BB/X01861X/1 - 财政年份:2023
- 资助金额:
$ 38.89万 - 项目类别:
Research Grant
Better localisation for epilepsy surgery by optimising simultaneous EEG and functional MRI recordings at 7T
通过优化 7T 同步脑电图和功能性 MRI 记录,更好地定位癫痫手术
- 批准号:
2886505 - 财政年份:2023
- 资助金额:
$ 38.89万 - 项目类别:
Studentship
Development of Low-Cost Automatic Machine for In-House Fabrication of Custom Microwire-Based Microelectrode Arrays for Electrophysiology Recordings
开发低成本自动机器,用于内部制造用于电生理学记录的定制微线微电极阵列
- 批准号:
10730576 - 财政年份:2023
- 资助金额:
$ 38.89万 - 项目类别:
Revealing the circuit mechanisms of altered conscious perception with neuropixels recordings and biophysically-inspired neural networks.
通过神经像素记录和生物物理学启发的神经网络揭示改变意识感知的回路机制。
- 批准号:
BB/X013243/1 - 财政年份:2023
- 资助金额:
$ 38.89万 - 项目类别:
Research Grant
Live spike sorting for multichannel and high-channel recordings
针对多通道和高通道录音的实时尖峰排序
- 批准号:
10759767 - 财政年份:2023
- 资助金额:
$ 38.89万 - 项目类别: