Ice-layer Permeability Controls Runoff from Ice Sheets (IPCRIS)

冰层渗透率控制冰盖径流 (IPCRIS)

基本信息

  • 批准号:
    NE/X000435/1
  • 负责人:
  • 金额:
    $ 77.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The Greenland Ice Sheet is the world's largest single source of barystatic sea-level rise (c.20% total rise) and more than half of the mass lost annually from the ice sheet comes from surface melt-water runoff. This proportion, and its magnitude, is rising with continued climate warming but future projections, and societal planning for sea level rise impacts, are undermined by a fundamental source of uncertainty. Across the vast majority of the accumulation area of the Greenland Ice Sheet, we do not know how much of the water produced from surface melting refreezes in underlying firn (i.e. multi-year snow) or becomes runoff. When the surface of an ice sheet melts, the density and temperature of underlying snow, firn and impermeable ice combine to determine whether melt refreezes in the underlying snow and firn, or becomes runoff to the ocean. If meltwater can percolate to depth (e.g. up to c.10 m) and access cold, low density firn, it can refreeze creating a significant buffer between climate change and sea-level rise. Alternatively, if melt encounters shallow impermeable ice layers (themselves created by previous refreezing) within relatively warm firn, melt cannot reach the cold firn and more melt will become runoff. The difference between these two scenarios alone could double ice sheet runoff by the middle of the 21st century. We rely on model simulations of surface melt, refreezing and runoff to accurately project the future contribution of the Greenland Ice Sheet to sea level rise. However, model-based estimates of the annual refreezing capacity of the ice sheet over the last six decades differ dramatically and undermines their ability to converge towards a reliable range of future projections. A major cause of uncertainty follows from the quite different assumptions that models make about ice layer permeability that dramatically alters the ice sheet refreezing capacity. If ice layers in firn are assumed to be impermeable (permeable), they will inhibit (allow) meltwater percolation to depth, diminish (maintain) refreezing capacity, increase (decrease) runoff and hence increase (decrease) projected global sea level rise. Without an improved treatment of ice layer permeability, existing surface mass balance models cannot provide reliable projections of the future refreezing capacity of, and melt-water runoff from, the Greenland Ice Sheet, leaving the ice sheet's future contribution to sea level rise highly uncertain. Firstly, we need to know the physical and thermal conditions of snow and firn that control the effective permeability of relatively thin ice layers (<0.5m thick) since within our warming climate these are increasingly determining the depth to which meltwater can percolate and hence control the refreezing capacity of the underlying firn. To this end we will undertake temperature-controlled laboratory experiments, systematically simulating and monitoring snow/firn/ice melt/refreezing/runoff. Secondly, we need to model the effective permeability of ice layers in snow and firn and their sensitivity to changing external and internal conditions since these together control how much melt refreezes or becomes runoff. For this, our lab work will inform novel developments to modelling to simulate measured arctic ice cap snowpack evolution. Finally we will incorporate improved ice layer permeability criteria within ice sheet scale models of the Greenland Ice Sheet to generate more accurate simulations of runoff and refreezing during melt extremes and improve harmonisation of long-term mass balance model projections, consequently improving global sea level rise predictions over the next century. Multiple recent "exceptional" melt seasons have caused near surface ice layers to proliferate through previously low density firn. These extremes will be the new norm in the future so new model parameterisations are urgently required that can effectively characterise ice layer control on mass balance.
格陵兰冰盖是世界上最大的常压海平面上升的单一来源(总上升约20%),每年从冰盖损失的质量有一半以上来自地表融水径流。随着气候持续变暖,这一比例及其规模正在上升,但未来的预测以及对海平面上升影响的社会规划,都受到了一个根本的不确定性来源的破坏。在格陵兰冰盖的绝大多数积累区,我们不知道表面融化产生的水中有多少在下层积雪(即多年的积雪)中重新冻结或成为径流。当冰盖表面融化时,底层积雪、积雪和不透水冰的密度和温度共同决定融化是在底层积雪和积雪中重新冻结,还是成为流入海洋的径流。如果融化的水可以渗透到深度(例如,高达约10米)并接触到寒冷、低密度的降雪,它可能会重新冻结,在气候变化和海平面上升之间形成一个重要的缓冲。或者,如果融化在相对温暖的积雪中遇到浅层不透水的冰层(它们自己是由先前重新冻结形成的),融化不能到达寒冷的积雪,更多的融化将成为径流。到21世纪中叶,仅这两种情景之间的差异就可能使冰盖径流增加一倍。我们依靠表面融化、再冻结和径流的模型模拟来准确预测格陵兰冰盖未来对海平面上升的贡献。然而,对过去60年冰盖年度重新冻结能力的基于模型的估计有很大不同,削弱了它们收敛到可靠的未来预测范围的能力。不确定性的一个主要原因来自模型对冰层渗透性做出的截然不同的假设,这些假设极大地改变了冰盖的再冻结能力。如果降雪中的冰层被认为是不透(透)的,它们将阻止(允许)融水渗入深度,减少(保持)再冻结能力,增加(减少)径流,从而增加(减少)预计的全球海平面上升。如果不改进对冰层渗透性的处理,现有的地表质量平衡模型无法对格陵兰冰盖未来的重新冻结能力和融化水径流提供可靠的预测,这使得冰盖未来对海平面上升的贡献非常不确定。首先,我们需要知道雪和积雪的物理和热条件,这些条件控制着相对较薄的冰层(0.5米厚)的有效渗透率,因为在我们变暖的气候中,这些条件越来越多地决定了融水可以渗透到的深度,从而控制了底层积雪的再冻结能力。为此,我们将进行温度控制的实验室实验,系统地模拟和监测雪/雪/冰融化/复冻/径流。其次,我们需要对积雪和积雪中冰层的有效渗透率以及它们对外部和内部条件变化的敏感性进行建模,因为这些因素共同控制着融化重新冻结或变成径流的程度。为此,我们的实验室工作将为模拟测量到的北极冰盖积雪演变的建模提供新的发展。最后,我们将在格陵兰冰盖的冰盖尺度模式中纳入改进的冰层渗透性标准,以更准确地模拟极端融化期间的径流和重新冻结,并改善长期物质平衡模式预测的协调性,从而改善对下个世纪全球海平面上升的预测。最近的多个“异常”融化季节导致近地表冰层通过以前的低密度积雪扩散。这些极端情况将是未来的新标准,因此迫切需要新的模式参数来有效地描述质量平衡中的冰层控制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Mair其他文献

Douglas Mair的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Mair', 18)}}的其他基金

The role of atmospheric forcing on the dynamic stability of Greenland's outlet glaciers
大气强迫对格陵兰岛出口冰川动态稳定性的作用
  • 批准号:
    NE/F021380/1
  • 财政年份:
    2009
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Research Grant

相似国自然基金

OVOL1/2介导的MET过程对体外肝上皮和肠组织分化的调控
  • 批准号:
    31701183
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
TGFβ-SMAD信号通路对干细胞分化的调控机制
  • 批准号:
    31771512
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
丘脑POm核团投射信息在第一躯体感觉皮层Layer 5a锥形细胞上的整合机制
  • 批准号:
    31200816
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
协同中继系统跨层资源分配与优化调度的理论及方法
  • 批准号:
    60972070
  • 批准年份:
    2009
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
流体湍流运动的相关数学分析
  • 批准号:
    10971174
  • 批准年份:
    2009
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
多跳无线 MESH 网络中 QoS 保障算法的研究设计和性能分析
  • 批准号:
    60902041
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
下一代无线通信系统自适应调制技术及跨层设计研究
  • 批准号:
    60802033
  • 批准年份:
    2008
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
不可压流体力学方程中的一些问题
  • 批准号:
    10771177
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    面上项目
S-layer细胞表面展示纳米级屋尘螨融合蛋白免疫治疗的实验研究
  • 批准号:
    30660166
  • 批准年份:
    2006
  • 资助金额:
    23.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Evaluation of Flowability of Fresh Concrete by Permeability Coefficient and Development of Quality Estimation Method for Hardened Surface Layer
用渗透系数评价新拌混凝土的流动性以及硬化表面层质量评价方法的开发
  • 批准号:
    20K04802
  • 财政年份:
    2020
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Modifications of turbulent boundary layer structure by wall permeability and surface-subsurface interactions: an innovative experimental approach
合作研究:通过壁渗透性和表面-地下相互作用修改湍流边界层结构:一种创新的实验方法
  • 批准号:
    1236527
  • 财政年份:
    2012
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Modifications of turbulent boundary layer structure by wall permeability and surface-subsurface interactions: an innovative experimental approach
合作研究:通过壁渗透性和表面-地下相互作用修改湍流边界层结构:一种创新的实验方法
  • 批准号:
    1235726
  • 财政年份:
    2012
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Standard Grant
Development of novel screening method based on the visualization of permeability distribution of cell layer
开发基于细胞层渗透性分布可视化的新型筛选方法
  • 批准号:
    23615001
  • 财政年份:
    2011
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of permeability of multi-layer coatings to CO2 and O2 and the implicaitons on pipeline corrosion
多层涂层对 CO2 和 O2 的渗透性表征及其对管道腐蚀的影响
  • 批准号:
    379930-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Collaborative Research and Development Grants
Characterization of permeability of multi-layer coatings to CO2 and O2 and the implicaitons on pipeline corrosion
多层涂层对 CO2 和 O2 的渗透性表征及其对管道腐蚀的影响
  • 批准号:
    379930-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Collaborative Research and Development Grants
Simulation of Permeability for Adhesive Monomer into Etched Dentin
粘合剂单体对蚀刻牙本质渗透性的模拟
  • 批准号:
    01571081
  • 财政年份:
    1989
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
EPITHELIAL PERMEABILITY; THE EFFECTS OF AGE AND ALCOHOL
上皮通透性;
  • 批准号:
    3221696
  • 财政年份:
    1988
  • 资助金额:
    $ 77.2万
  • 项目类别:
MUCOSAL PERMEABILITY AND SMOKELESS TOBACCO COMPONENTS
粘膜渗透性和无烟烟草成分
  • 批准号:
    3221695
  • 财政年份:
    1988
  • 资助金额:
    $ 77.2万
  • 项目类别:
MUCOSAL PERMEABILITY AND SMOKELESS TOBACCO COMPONENTS
粘膜渗透性和无烟烟草成分
  • 批准号:
    3221688
  • 财政年份:
    1988
  • 资助金额:
    $ 77.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了