Towards an understanding of methylotrophic methane production in anoxic coastal sediments

了解缺氧沿海沉积物中甲基营养型甲烷的产生

基本信息

  • 批准号:
    NE/X011461/1
  • 负责人:
  • 金额:
    $ 10.28万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

Methane is a powerful greenhouse gas which significantly contributes to global warming. Coastal sediments are dynamic ecosystems with substantial methane production. Yet, we know very little about the diversity of microbes producing methane in these ecosystems. This prohibits our understanding of how methane production in coastal sediments is regulated under changing environmental conditions and the development of models for accurate prediction of the future global methane budget under climate change. The major route to methane production in coastal sediments is the microbial degradation of methylated compounds, mainly methanol, trimethylamine (TMA) and dimethylsulfide (DMS). These compounds are highly abundant in the environment therefore lead to the production of substantial amount of methane. We recently found that the contribution of these compounds to the methane production in estuarine and saltmarsh sediments is likely underestimated and several different microbes convert TMA and DMS to methane in these sediments. Yet, we do not know which microbes actively convert these abundant methylated compounds to methane. This limits further research on the metabolic pathways of this process and how these pathways are regulated by environmental conditions (e.g. temperature and salinity). In this project, we aim to reveal the identity of the active microbes degrading methanol, TMA and DMS to methane in anoxic coastal sediments. This will not only open up new research avenues on global methane production but will also allow to develop models to predict future methane production in anoxic coastal sediments.We are well suited for this study, because:-we showed methanol, TMA and DMS are degraded to methane in a range of anoxic sediments. -we studied the key gene in methane production in anoxic sediments, allowing us to pinpoint the underlying microbial diversity.-we developed and used extensively the advanced microbiology tools such as stable isotope probing required for this study.Our objectives:1. Quantify the concentrations of methanol, TMA, DMS and methane in anoxic coastal sediments: We will quantify the depth distribution of methanol, TMA, DMS and methane concentrations in estuarine, coastal wetland and saltmarsh sediments. This will show the significance of each compound at sampling sites. This will enable us to design the stable isotope probing (SIP) experiments (Objective 2).2. Identify the methanogens that actively degrade methanol, TMA and DMS to methane in anoxic coastal sediments: We will use the SIP-sequencing approach that we developed to elucidate the identity of active microbes that degrade methanol, TMA and DMS to methane. We will amend the samples with 13C-methanol, 13C-TMA and 13C-DMS, and follow the incorporation of 13C into the genetic material (DNA) of microbes degrading these compounds. Sequencing the 13C-labelled DNA, we will obtain unprecedented detail about these microbes' identity.3. Determine the global distribution patterns of active methylotrophic methanogens in anoxic sediments: Using bioinformatics tools, we will search the publicly available sequence datasets for genetic markers from the active methanogens that we identify in Objective 2. This will include several advanced sequence datasets from marine and coastal ecosystems. Results will reveal the global distribution of dominant methanogens that degrade methanol, TMA and DMS in anoxic sediments across the world.This project will answer critical questions as to the identity of the active microorganisms degrading ubiquitous compounds to methane in coastal sediments as well as their global distribution patterns. The outcome of this research programme will pave the way for future research that would focus on the metabolism of these key microbial species and how they response to changing environmental conditions. This will allow developing models for better prediction of future methane production in a changing climate.
甲烷是一种强大的温室气体,对全球变暖起着重要作用。沿海沉积物是具有大量甲烷生产的动态生态系统。然而,我们对这些生态系统中产生甲烷的微生物的多样性知之甚少。这阻碍了我们理解在不断变化的环境条件下,沿海沉积物中的甲烷产生是如何被调节的,也阻碍了我们开发气候变化下准确预测未来全球甲烷收支的模型。沿海沉积物中甲烷产生的主要途径是甲基化化合物的微生物降解,主要是甲醇、三甲胺(TMA)和二甲硫醚(DMS)。这些化合物在环境中含量很高,因此导致大量甲烷的产生。我们最近发现,这些化合物对河口和盐沼沉积物中甲烷产生的贡献可能被低估了,并且几种不同的微生物将这些沉积物中的TMA和DMS转化为甲烷。然而,我们不知道哪些微生物积极地将这些丰富的甲基化化合物转化为甲烷。这限制了对这一过程的代谢途径以及这些途径如何受环境条件(如温度和盐度)调节的进一步研究。在本项目中,我们旨在揭示在缺氧海岸沉积物中降解甲醇、TMA和DMS为甲烷的活性微生物的身份。这不仅将为全球甲烷产量开辟新的研究途径,而且还将允许开发模型来预测缺氧沿海沉积物中未来的甲烷产量。我们非常适合这项研究,因为:-我们展示了甲醇,TMA和DMS在一系列缺氧沉积物中降解为甲烷。我们研究了缺氧沉积物中甲烷产生的关键基因,使我们能够确定潜在的微生物多样性。我们开发并广泛使用了本研究所需的先进微生物学工具,如稳定同位素探测。我们的目标:1。量化缺氧沿海沉积物中甲醇、TMA、DMS和甲烷的浓度:我们将量化河口、沿海湿地和盐沼沉积物中甲醇、TMA、DMS和甲烷浓度的深度分布。这将显示每个化合物在采样点的重要性。这将使我们能够设计稳定同位素探测(SIP)实验(目标2)。鉴定在缺氧沿海沉积物中有效降解甲醇、TMA和DMS为甲烷的产甲烷菌:我们将使用我们开发的sip测序方法来阐明降解甲醇、TMA和DMS为甲烷的活性微生物的身份。我们将用13C-甲醇、13C- tma和13C- dms对样品进行修饰,并将13C掺入降解这些化合物的微生物的遗传物质(DNA)中。对13c标记的DNA进行测序,我们将获得有关这些微生物身份的前所未有的详细信息。确定缺氧沉积物中活性甲基营养化产甲烷菌的全球分布模式:使用生物信息学工具,我们将搜索公开可用的序列数据集,寻找我们在目标2中确定的活性产甲烷菌的遗传标记。这将包括来自海洋和沿海生态系统的几个先进序列数据集。结果将揭示在全球缺氧沉积物中降解甲醇、TMA和DMS的优势产甲烷菌的全球分布。该项目将回答一些关键问题,如在沿海沉积物中将普遍存在的化合物降解为甲烷的活性微生物的身份,以及它们的全球分布模式。这项研究计划的结果将为未来的研究铺平道路,这些研究将集中在这些关键微生物物种的代谢以及它们如何对不断变化的环境条件作出反应。这将有助于开发模型,更好地预测气候变化下的未来甲烷产量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ozge Eyice-Broadbent其他文献

Ozge Eyice-Broadbent的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ozge Eyice-Broadbent', 18)}}的其他基金

NI: Microbial Dimethylsulphide Degradation in Anoxic Baltic Sea Sediments
NI:缺氧波罗的海沉积物中微生物二甲硫醚的降解
  • 批准号:
    NE/S007725/1
  • 财政年份:
    2018
  • 资助金额:
    $ 10.28万
  • 项目类别:
    Research Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 10.28万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 10.28万
  • 项目类别:
    Studentship
Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
  • 批准号:
    2881629
  • 财政年份:
    2027
  • 资助金额:
    $ 10.28万
  • 项目类别:
    Studentship
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
  • 批准号:
    MR/Y034244/1
  • 财政年份:
    2025
  • 资助金额:
    $ 10.28万
  • 项目类别:
    Fellowship
Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
  • 批准号:
    EP/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 10.28万
  • 项目类别:
    Research Grant
Home helper robots: Understanding our future lives with human-like AI
家庭帮手机器人:用类人人工智能了解我们的未来生活
  • 批准号:
    FT230100021
  • 财政年份:
    2025
  • 资助金额:
    $ 10.28万
  • 项目类别:
    ARC Future Fellowships
Deep imaging for understanding molecular processes in complex organisms
深度成像用于了解复杂生物体的分子过程
  • 批准号:
    LE240100091
  • 财政年份:
    2024
  • 资助金额:
    $ 10.28万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Understanding the implications of pandemic delays for the end of life
了解大流行延迟对生命终结的影响
  • 批准号:
    DP240101775
  • 财政年份:
    2024
  • 资助金额:
    $ 10.28万
  • 项目类别:
    Discovery Projects
Understanding multiday cycles underpinning human physiology
了解支撑人体生理学的多日周期
  • 批准号:
    DP240102899
  • 财政年份:
    2024
  • 资助金额:
    $ 10.28万
  • 项目类别:
    Discovery Projects
Understanding T cell trafficking and function during antigenic interference
了解抗原干扰期间 T 细胞的运输和功能
  • 批准号:
    DP240101665
  • 财政年份:
    2024
  • 资助金额:
    $ 10.28万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了