PAthways of Chemicals Into Freshwaters and their ecological ImpaCts (PACIFIC)

化学品进入淡水的途径及其生态影响(太平洋)

基本信息

  • 批准号:
    NE/X015947/1
  • 负责人:
  • 金额:
    $ 103.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Manufactured chemicals are essential for the maintenance of public health, food production, and quality of life, including a diverse range of pharmaceuticals, pesticides, and personal care products. The use of these compounds throughout society has led to increasing concentrations and chemodiversity in the environment. Whilst there has been a focus on understanding the impacts of chemicals on a subset of freshwater biodiversity (particularly invertebrates and fish), we understand less about how chemical pollution impacts freshwater microbes. These microbial communities (the 'microbiome') number in the millions to billions of cells per milliliter of water or gram of sediment and form the most biodiverse and functionally important component of freshwater ecosystems. The biogeochemical and ecological functions delivered by freshwater microbes are essential to wider freshwater ecosystem health. The PAthways of Chemicals Into Freshwaters and their ecological ImpaCts (PACIFIC) project will focus on understanding the link between sources of anthropogenic chemicals and their pathways, fate and ecological impacts in freshwater ecosystems, with an emphasis on freshwater microbial ecosystems and the functions they perform. We will investigate the relationship between predicted diffuse and point source chemical pathways and measured chemical concentrations in water and sediments at locations across the Thames and Bristol Avon catchments, chosen to represent gradients of diffuse pollution sources. These locations will be chosen to coincide with Wastewater Treatment Works (WwTWs) to understand how sewage effluent contributes to chemical burden across these gradients. Liquid chromatography coupled with (high resolution) tandem mass spectrometry and QTOF (quadrupole Time-of-Flight) mass spectrometry will be used to perform targeted and untargeted profiling of chemical groups proven and suspected to impact freshwater ecology. A range of microbial community ecosystem endpoints will also be measured at each location to identify the impact of chemical exposure, including bacterial and fungal community composition via DNA sequencing, the expression of nutrient cycling and chemical stress and resistance genes, the production of extracellular enzymes involved with biogeochemical cycling, and the functional gene repertoire of whole microbial communities.We will perform experimental microcosm exposures on freshwater microbial communities, with increasing complexity and realism, deploying high-throughput screening to identify novel chemical groups (and their structural features) with the capacity to restructure these communities. Exemplar microbial community modifying chemicals will be investigated in more detail by applying cutting-edge molecular techniques to determine ecological exposure thresholds that represent different taxonomic and functional aspects of freshwater microbial ecosystems. Novel field-based mesocosms will be used to explore wastewater exposures in more realistic, but controlled settings, allowing us to explore how chemical pollution may interact with other ecological drivers such as nutrients and temperature, and how microbial responses scale up to higher trophic levels and alter ecosystem functioning.Spatially and temporally up-scaled models of diffuse and point source chemical pollution pathways will be combined with novel thresholds developed from the lab and field exposures, to determine chemical threats to freshwater microbes, supporting the development of tools for the better management of the risks of chemical pollution to freshwater ecosystem health. These will be combined with future hydrological, climate, and socio-economic scenarios, informed by responses in our experiments and co-developed with project collaborators, the Environment Agency, to explore future threats to microbial freshwater ecosystems and wider ecosystem health.
化学制品对维护公共卫生、食品生产和生活质量至关重要,包括各种药品、农药和个人护理产品。这些化合物在整个社会中的使用导致了环境中浓度和化学多样性的增加。虽然人们一直关注了解化学品对淡水生物多样性的一部分(特别是无脊椎动物和鱼类)的影响,但我们对化学污染如何影响淡水微生物的了解较少。这些微生物群落(“微生物组”)的数量在每毫升水或每克沉积物中有数百万至数十亿个细胞,构成了淡水生态系统中最具生物多样性和功能重要的组成部分。淡水微生物的生物地球化学和生态功能对更广泛的淡水生态系统健康至关重要。化学品进入淡水的途径及其生态影响(太平洋)项目将侧重于了解淡水生态系统中人为化学品来源及其途径、归宿和生态影响之间的联系,重点是淡水微生物生态系统及其功能。我们将调查预测的扩散和点源化学途径和测量的化学浓度在整个泰晤士河和布里斯托埃文流域,选择代表扩散污染源的梯度的位置在水和沉积物之间的关系。这些地点的选择将与污水处理厂(WwTW)相吻合,以了解污水如何在这些梯度上造成化学负担。液相色谱法与(高分辨率)串联质谱法和QTOF(四极杆飞行时间)质谱法相结合,将用于对已证实和怀疑影响淡水生态的化学基团进行有针对性和非有针对性的分析。还将在每个地点测量一系列微生物群落生态系统终点,以确定化学品暴露的影响,包括通过DNA测序确定细菌和真菌群落组成、营养循环和化学胁迫和抗性基因的表达、参与生物地球化学循环的胞外酶的产生、以及整个微生物群落的功能基因库。我们将对淡水微生物群落进行实验性的微观暴露,随着复杂性和现实性的增加,部署高通量筛选,以确定新的化学基团(及其结构特征),具有重组这些社区的能力。将通过应用尖端分子技术来更详细地研究示例性微生物群落修饰化学品,以确定代表淡水微生物生态系统不同分类和功能方面的生态暴露阈值。新的基于野外的中型生态系统将被用于在更现实但受控的环境中探索废水暴露,使我们能够探索化学污染如何与其他生态驱动因素(如营养素和温度)相互作用,以及微生物的反应如何扩大到更高的营养水平,并改变生态系统的功能。扩散和点源化学污染途径的比例模型将与从实验室和现场暴露中开发的新阈值相结合,以确定对淡水微生物的化学威胁,支持开发工具,更好地管理化学品污染对淡水生态系统健康的风险。这些将与未来的水文,气候和社会经济情景相结合,通过我们实验中的反应并与项目合作者环境局共同开发,以探索未来对微生物淡水生态系统和更广泛的生态系统健康的威胁。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Read其他文献

The Efficacy of Different Methods for Informing the Public About the Range Dependency of Magnetic Fields from High Voltage Power Lines
向公众通报高压输电线磁场范围依赖性的不同方法的功效
  • DOI:
    10.1111/j.1539-6924.1998.tb00373.x
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Daniel Read;M. G. Morgan
  • 通讯作者:
    M. G. Morgan
Legitimating innovation through category positioning: a case study of The Hundred cricket competition
通过品类定位使创新合法化:百强板球比赛案例研究
Introduction to FUR special issue
  • DOI:
    10.1007/s11238-011-9275-2
  • 发表时间:
    2011-06-25
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Glenn W. Harrison;Morten I. Lau;Daniel Read
  • 通讯作者:
    Daniel Read
Dispositif et procédé de stockage de données
货物库存的处置和程序
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. P. Cowburn;D. Petit;Daniel Read;Oleg Petracic
  • 通讯作者:
    Oleg Petracic
Laboratory basis for the medical management of necrotizing enterocolitis (NEC)
  • DOI:
    10.1016/s0022-3468(84)80253-5
  • 发表时间:
    1984-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Schmuel Katz;Kirby R. Gross;Donald Ross;Daniel Read;Michael Wolfe;Thomas R. Weber;Jay L. Grosfeld
  • 通讯作者:
    Jay L. Grosfeld

Daniel Read的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Read', 18)}}的其他基金

MICRO-CYCLE: Unravelling the role of microbial genomic traits in organic matter cycling and molecular composition along the river continuum
微循环:揭示微生物基因组特征在河流连续体有机物循环和分子组成中的作用
  • 批准号:
    NE/Z000173/1
  • 财政年份:
    2024
  • 资助金额:
    $ 103.8万
  • 项目类别:
    Research Grant
BBSRC Institute Strategic Programme: Decoding Biodiversity (DECODE) - Partner Grant
BBSRC 研究所战略计划:解码生物多样性 (DECODE) - 合作伙伴资助
  • 批准号:
    BB/X020037/1
  • 财政年份:
    2023
  • 资助金额:
    $ 103.8万
  • 项目类别:
    Research Grant
Unlocking wetland ecologies and agriculture in prehistory through sulphur isotopes.
通过硫同位素解锁史前时期的湿地生态和农业。
  • 批准号:
    NE/W000814/1
  • 财政年份:
    2022
  • 资助金额:
    $ 103.8万
  • 项目类别:
    Research Grant
NEC05836 The environmental REsistome: confluence of Human and Animal Biota in antibiotic resistance spread (REHAB)
NEC05836 环境 REsistome:人类和动物生物群在抗生素耐药性传播中的汇合 (REHAB)
  • 批准号:
    NE/N019660/1
  • 财政年份:
    2016
  • 资助金额:
    $ 103.8万
  • 项目类别:
    Research Grant
NSF: Molecular Engineering of Polymers for Processing Performance and Properties
NSF:聚合物分子工程的加工性能和特性
  • 批准号:
    EP/D06631X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 103.8万
  • 项目类别:
    Research Grant

相似海外基金

Converting lignin condensed structures into high-value polyaromatic hydrocarbon chemicals by controlled pyrolysis
通过受控热解将木质素缩合结构转化为高价值的多芳烃化学品
  • 批准号:
    24K17940
  • 财政年份:
    2024
  • 资助金额:
    $ 103.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Porous Tandem Catalyst for CO2 Conversion into Sustainable Chemicals
用于将二氧化碳转化为可持续化学品的多孔串联催化剂
  • 批准号:
    DE230100327
  • 财政年份:
    2024
  • 资助金额:
    $ 103.8万
  • 项目类别:
    Discovery Early Career Researcher Award
Upcycling Waste Polyethylene into Nylon Precursors and Platform Chemicals via A Hybrid Pyrolysis-Biomanufacturing Approach
通过混合热解-生物制造方法将废弃聚乙烯升级改造为尼龙前体和平台化学品
  • 批准号:
    2317307
  • 财政年份:
    2023
  • 资助金额:
    $ 103.8万
  • 项目类别:
    Standard Grant
Photocatalysts for Converting Plastic Wastes into Hydrogen and Chemicals
将塑料废物转化为氢气和化学品的光催化剂
  • 批准号:
    FT230100192
  • 财政年份:
    2023
  • 资助金额:
    $ 103.8万
  • 项目类别:
    ARC Future Fellowships
Catalyst design for converting carbon dioxide into valuable chemicals
将二氧化碳转化为有价值的化学品的催化剂设计
  • 批准号:
    DE230100357
  • 财政年份:
    2023
  • 资助金额:
    $ 103.8万
  • 项目类别:
    Discovery Early Career Researcher Award
PAthways of Chemicals Into Freshwaters and their ecological ImpaCts (PACIFIC)
化学品进入淡水的途径及其生态影响(太平洋)
  • 批准号:
    NE/X015890/1
  • 财政年份:
    2022
  • 资助金额:
    $ 103.8万
  • 项目类别:
    Research Grant
Evolving cyclopropane fatty acid synthase CFAS enzymes into biocatalysts for the synthesis of cyclopropane containing drugs and chemicals
将环丙烷脂肪酸合酶 CFAS 进化为生物催化剂,用于合成含环丙烷的药物和化学品
  • 批准号:
    BB/W510178/2
  • 财政年份:
    2022
  • 资助金额:
    $ 103.8万
  • 项目类别:
    Training Grant
FMRG: Bio: CAS: Distributed methane conversion into value chemicals via synthetic microbial consortia
FMRG:生物:CAS:通过合成微生物群将分布式甲烷转化为有价值的化学品
  • 批准号:
    2229070
  • 财政年份:
    2022
  • 资助金额:
    $ 103.8万
  • 项目类别:
    Standard Grant
Using ecophysiology to better predict the uptake of chemicals into fish
利用生态生理学更好地预测鱼类对化学物质的吸收
  • 批准号:
    2695320
  • 财政年份:
    2022
  • 资助金额:
    $ 103.8万
  • 项目类别:
    Studentship
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
  • 批准号:
    RGPIN-2018-04727
  • 财政年份:
    2022
  • 资助金额:
    $ 103.8万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了