Probing fundamental physics with multi-wavelength cosmology

用多波长宇宙学探索基础物理

基本信息

  • 批准号:
    ST/I005129/1
  • 负责人:
  • 金额:
    $ 64.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

What happened at the beginning of our Universe? Where did all the structure (e.g. stars, galaxies, the earth, etc.) come from? What is the nature of dark matter? Or the 'dark energy' responsible for accelerating the expansion of the Universe? My proposal is focused on shedding light on these profound mysteries. First, by making precise observations of the microwave emission across the sky, I will probe earlier into the Universe's history than we have ever reached before. These microwaves, emitted about 13 billion years ago by the nascent Universe, may contain very weak patterns called 'B-modes'. If detected, these B-modes would be compelling evidence that the Universe underwent a period of rapid expansion, known as 'inflation', very early on. Inflation would provide a natural explanation for structure in the Universe: quantum fluctuations in the fabric of space-time would have been stretched and amplified during the expansion, producing the initial seeds of structure from which all others have grown. A precise measurement of B-modes could also tell us about fundamental physics. If inflation did happen, then it happened at very early times when the Universe was extremely hot and dense. Under these conditions, do our laws of physics still work? A detection of B-modes would be the first step on the road to using the early Universe as a 'natural laboratory' to investigate this question. Over the next 5 years, I will analyse the data from telescopes searching for the smoking gun B-mode signature. Teasing out the tiny signal from the observations will be a huge challenge because it is expected to be much weaker than other effects in the data. For example, our own Galaxy emits microwaves which are much stronger than the B-mode signal. Equally important, imperfections in the design of the telescopes can mimic a real signal. I therefore plan to develop new techniques capable of distinguishing between the true signal and these contaminating effects. Turning to the dark energy, one of the best ways to probe this unknown is by measuring how structures have grown over the Universe's history. Because it's a repulsive force, dark energy counteracts gravity and therefore suppresses the growth of structures. A powerful way to measure this structure is the technique of gravitational lensing. As light from a distant galaxy passes by a clump of matter, it is slightly deflected (or 'lensed') by the matter's gravitational field. This effect results in slight distortions in the observed shapes of distant galaxies which one can use to infer the dark matter structure. During my fellowship, I will perform this analysis on new sky surveys in order to learn about the dark matter and dark energy. In particular I will develop and apply a new and innovative technique to measure gravitational lensing in the radio band which I have recently proposed. Using this technique, I can be sure that the distortions in the shapes of distant galaxies are really due to the lensing effect rather than being intrinsic to the galaxies themselves. Both microwave B-modes and gravitational lensing are young and extremely exciting fields of study. They are exciting because of their unique potential to probe unknown physics. The physics of the early Universe and the nature of dark energy are consistently rated, by both STFC's own advisory panels, and by international bodies, as the two most important questions facing cosmology today. The research described in this proposal will play an important role in tackling these two frontiers of scientific knowledge.
宇宙诞生之初发生了什么?所有的结构(如恒星、星系、地球等)从何而来?暗物质的本质是什么?还是加速宇宙膨胀的“暗能量”?我的建议集中于揭示这些深奥的奥秘。首先,通过精确观测天空中的微波辐射,我将比以往任何时候都更早地探索宇宙的历史。这些微波是大约130亿年前由新生宇宙发出的,可能包含非常微弱的模式,称为“B模式”。如果被探测到,这些B模式将是令人信服的证据,证明宇宙在很早的时候就经历了一段快速膨胀的时期,被称为“暴胀”。暴胀将为宇宙的结构提供一个自然的解释:时空结构中的量子涨落将在膨胀过程中被拉伸和放大,产生结构的初始种子,所有其他结构都是从这个种子中生长出来的。对B模式的精确测量也可以告诉我们基础物理学。如果暴胀确实发生过,那么它发生在宇宙非常热和致密的早期。在这种情况下,我们的物理定律还有效吗?探测到B模式将是利用早期宇宙作为“自然实验室”来研究这个问题的第一步。在接下来的5年里,我将分析望远镜的数据,寻找B模式的确凿证据。从观测中梳理出微小的信号将是一个巨大的挑战,因为它预计将比数据中的其他效应弱得多。例如,我们自己的银河系发射的微波比B模式信号强得多。同样重要的是,望远镜设计上的缺陷可能会模拟出真实的信号。因此,我计划开发能够区分真实信号和这些污染效应的新技术。谈到暗能量,探索这个未知的最好方法之一是测量宇宙历史上的结构是如何发展的。因为它是一种排斥力,暗能量抵消了引力,因此抑制了结构的生长。测量这种结构的一种强有力的方法是引力透镜技术。当来自遥远星系的光经过一团物质时,它会被物质的引力场轻微地偏转(或“透镜”)。这种效应会导致观测到的遥远星系的形状发生轻微的扭曲,人们可以用它来推断暗物质的结构。在我的研究期间,我将对新的天空调查进行分析,以了解暗物质和暗能量。特别是我将开发和应用一种新的和创新的技术来测量引力透镜在无线电频段,我最近提出。使用这种技术,我可以确定遥远星系形状的扭曲实际上是由于透镜效应,而不是星系本身固有的。微波B模式和引力透镜都是年轻而又非常令人兴奋的研究领域。它们令人兴奋,因为它们具有探索未知物理学的独特潜力。早期宇宙的物理学和暗能量的性质一直被STFC自己的顾问小组和国际机构评为当今宇宙学面临的两个最重要的问题。本建议中所述的研究将在解决这两个科学知识前沿方面发挥重要作用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Weak gravitational lensing with the Square Kilometre Array
平方公里阵列的弱引力透镜效应
  • DOI:
    10.22323/1.215.0023
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brown M
  • 通讯作者:
    Brown M
BINGO: a single dish approach to 21cm intensity mapping
BINGO:单盘方法实现 21 厘米强度映射
  • DOI:
    10.48550/arxiv.1209.1041
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Battye R. A.
  • 通讯作者:
    Battye R. A.
SKA Weak Lensing II: Simulated Performance and Survey Design Considerations
  • DOI:
    10.1093/mnras/stw2104
  • 发表时间:
    2016-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    A. Bonaldi;I. Harrison;S. Camera;Michael L. Brown
  • 通讯作者:
    A. Bonaldi;I. Harrison;S. Camera;Michael L. Brown
Foreground removal requirements for measuring large-scale CMB B modes in light of BICEP2
根据 BICEP2 测量大规模 CMB B 模式的前景去除要求
Prospects for weak lensing studies with new radio telescopes
新型射电望远镜弱透镜研究的前景
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Brown其他文献

Paleoarchean metamorphism in the Acasta Gneiss Complex: Constraints from phase equilibrium modelling and in situ garnet Lu–Hf geochronology
阿卡斯塔片麻岩杂岩中的古太古代变质作用:来自相平衡模型和原位石榴石 Lu-Hf 地质年代学的约束
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    J. Kaempf;Tim E. Johnson;C. Clark;J. Alfing;Michael Brown;P. Lanari;Kai Rankenburg
  • 通讯作者:
    Kai Rankenburg
Plate margin processes and ‘paired’ metamorphic belts in Japan: Comment on ‘Thermal effects of ridge subduction and its implications for the origin of granitic batholith and paired metamorphic belts’ by H. Iwamori
日本的板块边缘过程和“成对”变质带:评论 H. Iwamori 的“山脊俯冲的热效应及其对花岗岩岩基和成对变质带起源的影响”
Influence of intra-amoebic and other growth conditions on the surface properties of Legionella pneumophila
阿米巴内和其他生长条件对嗜肺军团菌表面特性的影响
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    J. Barker;Peter A. Lambert;Michael Brown
  • 通讯作者:
    Michael Brown
Some observations on Statnamic pile testing
静态桩测试的一些观察
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Brown;A. Hyde
  • 通讯作者:
    A. Hyde
Polyethylene Glycol-3350 (Miralax®)+1.9-L sports drink (Gatorade®)+2 tablets of bisacodyl results in inferior bowel preparation for colonoscopy compared with Polyethylene Glycol-Ascorbic Acid (MoviPrep®).
与聚乙二醇抗坏血酸 (MoviPrep®) 相比,聚乙二醇-3350 (Miralax®)+1.9 L 运动饮料 (Gatorade®)+2 片比沙可啶导致结肠镜检查的肠道准备较差。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Khan;K. Patel;M. Nooruddin;Garth B. Swanson;L. Fogg;A. Keshavarzian;Michael Brown
  • 通讯作者:
    Michael Brown

Michael Brown的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Brown', 18)}}的其他基金

Multigraded commutative algebra and the geometry of syzygies
多级交换代数和 syzygies 几何
  • 批准号:
    2302373
  • 财政年份:
    2023
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Standard Grant
STTR Phase I: Solar-driven, thermally responsive membranes for off-grid water purification
STTR 第一阶段:用于离网水净化的太阳能驱动热响应膜
  • 批准号:
    2213218
  • 财政年份:
    2022
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Standard Grant
Simons Observatory:UK technology development and demonstration
西蒙斯天文台:英国技术开发与示范
  • 批准号:
    ST/X006336/1
  • 财政年份:
    2022
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Research Grant
Offshore Cable Burial: How deep is deep enough?
海上电缆埋设:多深才算足够深?
  • 批准号:
    EP/W000997/1
  • 财政年份:
    2022
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Research Grant
SO:UK - A major UK contribution to Simons Observatory
SO:UK - 英国对西蒙斯天文台的重大贡献
  • 批准号:
    ST/X006344/1
  • 财政年份:
    2022
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Research Grant
SO:UK - A major UK contribution to the Simons Observatory
SO:UK - 英国对西蒙斯天文台的重大贡献
  • 批准号:
    ST/W002914/1
  • 财政年份:
    2022
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Research Grant
Collisional fragments of Jupiter Trojans as windows into the formation of the solar system
木星特洛伊木马的碰撞碎片是了解太阳系形成的窗口
  • 批准号:
    2109212
  • 财政年份:
    2021
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Standard Grant
Doctoral Consortium Workshop at the Learning Analytics and Knowledge Conference 2020
2020 年学习分析和知识会议上的博士联盟研讨会
  • 批准号:
    1951865
  • 财政年份:
    2020
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Standard Grant
Catalyzing Student Success: Implementing Cyberlearning Tools in Large Introductory Courses in the Chemical Engineering Pathway
促进学生成功:在化学工程途径的大型入门课程中实施网络学习工具
  • 批准号:
    1928842
  • 财政年份:
    2020
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Standard Grant
SO:UK Phase A
SO:英国A期
  • 批准号:
    ST/T007222/1
  • 财政年份:
    2020
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Research Grant

相似海外基金

Probing Fundamental Physics with Gravitational Experiments
用引力实验探索基础物理
  • 批准号:
    2309195
  • 财政年份:
    2023
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Standard Grant
Probing Fundamental Physics on Cosmological Scales
探索宇宙尺度的基础物理
  • 批准号:
    2209991
  • 财政年份:
    2022
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Standard Grant
MPS-Ascend: Probing Fundamental Physics with Next Generation Gravitational Wave Detectors
MPS-Ascend:利用下一代引力波探测器探索基础物理
  • 批准号:
    2213266
  • 财政年份:
    2022
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Fellowship Award
Probing Fundamental Physics with Gravitational-Wave Observations
用引力波观测探索基础物理
  • 批准号:
    ST/V005669/1
  • 财政年份:
    2021
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Research Grant
Probing Fundamental Physics with Gravitational Experiments
用引力实验探索基础物理
  • 批准号:
    2011520
  • 财政年份:
    2020
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Continuing Grant
Probing Fundamental Physics with Gravitational Experiments
用引力实验探索基础物理
  • 批准号:
    1912514
  • 财政年份:
    2019
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Standard Grant
Probing Fundamental Physics on Cosmological Scales
探索宇宙尺度的基础物理
  • 批准号:
    1820775
  • 财政年份:
    2018
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Continuing Grant
Probing Fundamental Physics with Gravitational Experiments
用引力实验探索基础物理
  • 批准号:
    1607391
  • 财政年份:
    2016
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Continuing Grant
CAREER: Probing Fundamental Physics and Cosmic Structure by Maximizing the Impact of Next Generation Microwave Surveys
职业:通过最大化下一代微波巡天的影响来探索基础物理和宇宙结构
  • 批准号:
    1454881
  • 财政年份:
    2015
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Continuing Grant
Probing Fundamental Physics on Cosmological Scales
探索宇宙尺度的基础物理
  • 批准号:
    1521097
  • 财政年份:
    2015
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了