Theory Consolidated Grant. - Standard Model Phenomenology and Beyond the Standard Model Phenomenology.
理论综合格兰特。
基本信息
- 批准号:ST/L000377/1
- 负责人:
- 金额:$ 52.25万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main focus of Hamilton's research is to further develop precise computer simulations based on QCD calculations (so-called Monte Carlo techniques) for the large number of final state particles in collider physics processes. This will facilitate discovery and interpretation of new physics at the Large Hadron Collider (LHC). While precision simulations may not always be needed to claim a discovery, e.g. if new physics reveals itself as a heavy, easily resolved new particle, in many scenarios, such as supersymmetry, signals are expected to manifest as subtle distortions in the shapes of distributions. Hence, an accurate understanding of the Standard Model background, subject to all experimental cuts, is fundamental to claiming a discovery, or setting exclusion limits. Moreover, precise simulations are essential in attempting to determine what it is that has been found. The newly discovered 125 GeV mass Higgs-like boson is a prime example of this, and one for which simulations that Hamilton contributes to are being used to this end by the LHC Higgs working group. Research in the near future will focus on improved precision and theoretical rigour for the Monte Carlo generators used in simulations. Thorne's work is complementary and in many senses similar. It involves the details of the initial state in particle collisions. At colliders which use hadrons, e.g. the LHC which uses protons, the beam is effectively made up of the hadronic constituents, quarks and gluons, generically known as partons. Hence, in order to make predictions for any reaction, both for Standard Model and new physics, one needs to know the precise partonic composition of the hadrons in terms of both the energy fraction of the hadron and the energy scale of the scattering process (e.g., the mass of a particle produced). Thorne is the lead member of the MSTW group that provides one of the standard sets of parton distribution functions (PDFs) used in both the experimental and theoretical analyses at the LHC and previous colliders. The technique is constantly being improved in terms of the theoretical basis, and more data are appearing which help constrain the PDFs further. Hence, Thorne's work will be based on improving PDF determination, providing updated PDFs for use at colliders and helping to determine the consequences of any changes in both central values and uncertainties. Both Hamilton and Thorne are involved in precision calculations at the LHC and will provide expertise in interpreting any deviations which could be the first sign of Beyond the Standard Model (BSM) Physics. BSM phenomenology aims to uncover deeper laws and structures in nature than currently known. The work of Deppisch achieves this by taking experimental results (e.g. from the LHC) and comparing them with predictions derived from new theoretical ideas (e.g. the notion of more than three space dimensions). Neutrinos play a very important role as they are the least understood of all known matter particles. Their most mysterious property is their lightness; the exact value of the mass is unknown but it is at least a million times smaller than the next lightest particle, the electron. There is no agreed explanation for this huge discrepancy which goes at the heart of the fundamental question: What is mass? Even if the Higgs boson is confirmed by the LHC as the source of the mass of particles such as quarks, the lightness of neutrinos still remains a mystery, but we also expect that once we solve this, a large piece of the puzzle of nature will fall in our lap. The proposed research aims to determine the absolute neutrino mass as precisely and robustly as possible from a range of experimental results which are expected over the next years. In addition, the work will correlate physics phenomena at different experiments within a theoretical framework. This is necessary as no single experiment can probe all aspects of nature.
汉密尔顿研究的主要重点是进一步开发基于 QCD 计算(所谓的蒙特卡罗技术)的精确计算机模拟,用于对撞机物理过程中的大量最终状态粒子。这将有助于大型强子对撞机(LHC)新物理学的发现和解释。虽然声称发现并不总是需要精确模拟,例如如果新物理学揭示自己是一种重的、易于解析的新粒子,那么在许多情况下,例如超对称性,信号预计会表现为分布形状的微妙扭曲。因此,准确理解标准模型背景(受所有实验削减的影响)对于声称发现或设定排除限制至关重要。此外,精确的模拟对于试图确定已发现的内容至关重要。新发现的 125 GeV 质量的类希格斯玻色子就是一个典型的例子,大型强子对撞机希格斯工作组正在使用汉密尔顿贡献的模拟来实现这一目标。不久的将来的研究将集中于提高模拟中使用的蒙特卡罗发生器的精度和理论严谨性。索恩的工作是互补的,并且在许多意义上都是相似的。它涉及粒子碰撞中初始状态的细节。在使用强子的对撞机中,例如使用质子的大型强子对撞机,光束实际上由强子成分、夸克和胶子(通常称为部分子)组成。因此,为了对任何反应进行预测,无论是标准模型还是新物理学,我们都需要知道强子的精确粒子组成,包括强子的能量分数和散射过程的能量尺度(例如,产生的粒子的质量)。 Thorne 是 MSTW 小组的主要成员,该小组提供了一组标准的部分子分布函数 (PDF),用于大型强子对撞机和以前的对撞机的实验和理论分析。该技术在理论基础方面不断得到改进,并且越来越多的数据出现,这有助于进一步约束 PDF。因此,Thorne 的工作将基于改进 PDF 确定,提供更新的 PDF 以供对撞机使用,并帮助确定中心值和不确定性的任何变化的后果。汉密尔顿和索恩都参与了大型强子对撞机的精确计算,并将提供解释任何偏差的专业知识,这可能是超越标准模型(BSM)物理学的第一个迹象。 BSM 现象学旨在揭示自然界中比目前已知的更深层次的规律和结构。 Deppisch 的工作通过获取实验结果(例如来自大型强子对撞机)并将其与来自新理论思想(例如超过三个空间维度的概念)的预测进行比较来实现这一目标。中微子发挥着非常重要的作用,因为它们是所有已知物质粒子中我们了解最少的。它们最神秘的特性就是重量轻。质量的确切值尚不清楚,但它至少比第二轻的粒子(电子)小一百万倍。对于这个巨大差异没有一致的解释,而这个差异是基本问题的核心:什么是质量?即使希格斯玻色子被大型强子对撞机确认为夸克等粒子质量的来源,中微子的轻度仍然是一个谜,但我们也期望,一旦我们解决了这个问题,自然之谜的一大块将落在我们的腿上。拟议的研究旨在根据未来几年预计的一系列实验结果,尽可能精确和可靠地确定绝对中微子质量。此外,这项工作还将在理论框架内将不同实验中的物理现象联系起来。这是必要的,因为没有任何一个实验可以探究自然的所有方面。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The PDF4LHC21 combination of global PDF fits for the LHC Run III*
- DOI:10.1088/1361-6471/ac7216
- 发表时间:2022-08-01
- 期刊:
- 影响因子:3.5
- 作者:Ball, Richard D.;Butterworth, Jon;Yuan, C-P
- 通讯作者:Yuan, C-P
Modelling $W^+ W^-$ production with rapidity gaps at the LHC
在 LHC 上对 $W^ W^-$ 生产与速度差距进行建模
- DOI:10.48550/arxiv.2201.08403
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bailey S
- 通讯作者:Bailey S
Snowmass 2021 Whitepaper: Proton Structure at the Precision Frontier
Snowmass 2021 白皮书:精密前沿的质子结构
- DOI:10.5506/aphyspolb.53.12-a1
- 发表时间:2022
- 期刊:
- 影响因子:0.5
- 作者:Amoroso, S.;Apyan, A.;Armesto, N.;Ball, R.D.;Bertone, V.;Bissolotti, C.;Blümlein, J.;Boughezal, R.;Bozzi, G.;Britzger, D.
- 通讯作者:Britzger, D.
Dark matter and exotic neutrino interactions in direct detection searches
- DOI:10.1007/jhep04(2017)073
- 发表时间:2017-01
- 期刊:
- 影响因子:5.4
- 作者:E. Bertuzzo;F. Deppisch;S. Kulkarni;Yuber F. Perez Gonzalez;R. Funchal
- 通讯作者:E. Bertuzzo;F. Deppisch;S. Kulkarni;Yuber F. Perez Gonzalez;R. Funchal
LHC forward physics
- DOI:10.1088/0954-3899/43/11/110201
- 发表时间:2016-11
- 期刊:
- 影响因子:0
- 作者:K. Akiba;M. Akbiyik;M. Albrow;M. Arneodo;V. Avati;V. Avati;J. Baechler;O. Baillie;P. Bartalini;J. Bartels;S. Baur;C. Baus;W. Beaumont;U. Behrens;D. Berge;M. Berretti;M. Berretti;E. Bossini;R. Boussarie;S. Brodsky;M. Broz;M. Bruschi;P. Bussey;W. Byczynski;J. Noris;E. C. Villar;A. Campbell;F. Caporale;W. Carvalho;G. Chachamis;E. Chapon;C. Cheshkov;J. Chwastowski;R. Ciesielski;D. Chinellato;A. Cisek;V. Coco;P. Collins;J. G. Contreras;B. Cox;D. Damiao;P. Davis;M. Deile;D. d’Enterria;D. Druzhkin;B. Ducloué;B. Ducloué;R. Dumps;R. Dzhelyadin;P. Dziurdzia;M. Eliachevitch;P. Fassnacht;F. Ferro;S. Fichet;D. Figueiredo;D. Finogeev;R. Fiore;J. Forshaw;A. Medina;M. Gallinaro;A. Granik;G. Gersdorff;S. Giani;K. Golec-Biernat;V. Gonçalves;P. Göttlicher;K. Goulianos;J.-Y. Grosslord;L. Harland–Lang;H. Haevermaet;M. Hentschinski;R. Engel;G. Corral;J. Hollar;L. Huertas;D. Johnson;I. Katkov;O. Kepka;M. Khakzad;L. Kheyn;V. Khachatryan;V. Khoze;S. Klein;M. Klundert;F. Krauss;A. Kurepin;N. Kurepin;K. Kutak;E. Kuznetsova;G. Latino;P. Lebiedowicz;B. Lenzi;E. Lewandowska;S. Liu;A. Luszczak;M. Luszczak;J. D. Madrigal;M. Mangano;Z. Marcone;Cyrille Marquet;Alan D. Martin;T. Martin;M. M. Hernández-M.;C. Martins;C. Mayer;R. Nulty;P. Mechelen;R. Macula;E. Costa;T. Mertzimekis;C. Mesropian;M. Mieskolainen;N. Minafra;I. Monzón;L. Mundim;B. Murdaca;M. Murray;H. Niewiadowski;J. Nystrand;E. G. Oliveira;R. Orava;S. Ostapchenko;K. Osterberg;A. Panagiotou;A. Papa;R. Pasechnik;T. Peitzmann;L. Moreno;T. Pierog;J. Pinfold;M. Poghosyan;M. Pol;W. Prado;V. Popov;M. Rangel;A. Reshetin;J. Revol;M. Rijssenbeek;M. Rodriguez;B. Roland;C. Royon;C. Royon;M. Ruspa;M. Ryskin;M. Ryskin;A. Vera;G. Safronov;T. Sako;H. Schindler;D. Šálek;K. Šafařík;M. Saimpert;A. Santoro;R. Schicker;J. Seger;S. Sen;A. Shabanov;W. Schäfer;G. G. Silveira-G.;P. Skands;R. Soluk;A. Spilbeeck;R. Staszewski;S. Stevenson;W. Stirling;M. Strikman;A. Szczurek;L. Szymanowski;J. D. T. Takaki;M. Tasevsky;K. Taesoo;C. Thomas;S. R. Torres;A. Tricomi;M. Trzebiński;D. Tsybychev;N. Turini;R. Ulrich;E. Usenko;J. Varela;M. Vetere;A. V. Tello;A. Pereira;D. Volyanskyy;S. Wallon;G. Wilkinson;H. Wöhrmann;K. Zapp;Y. Zoccarato
- 通讯作者:K. Akiba;M. Akbiyik;M. Albrow;M. Arneodo;V. Avati;V. Avati;J. Baechler;O. Baillie;P. Bartalini;J. Bartels;S. Baur;C. Baus;W. Beaumont;U. Behrens;D. Berge;M. Berretti;M. Berretti;E. Bossini;R. Boussarie;S. Brodsky;M. Broz;M. Bruschi;P. Bussey;W. Byczynski;J. Noris;E. C. Villar;A. Campbell;F. Caporale;W. Carvalho;G. Chachamis;E. Chapon;C. Cheshkov;J. Chwastowski;R. Ciesielski;D. Chinellato;A. Cisek;V. Coco;P. Collins;J. G. Contreras;B. Cox;D. Damiao;P. Davis;M. Deile;D. d’Enterria;D. Druzhkin;B. Ducloué;B. Ducloué;R. Dumps;R. Dzhelyadin;P. Dziurdzia;M. Eliachevitch;P. Fassnacht;F. Ferro;S. Fichet;D. Figueiredo;D. Finogeev;R. Fiore;J. Forshaw;A. Medina;M. Gallinaro;A. Granik;G. Gersdorff;S. Giani;K. Golec-Biernat;V. Gonçalves;P. Göttlicher;K. Goulianos;J.-Y. Grosslord;L. Harland–Lang;H. Haevermaet;M. Hentschinski;R. Engel;G. Corral;J. Hollar;L. Huertas;D. Johnson;I. Katkov;O. Kepka;M. Khakzad;L. Kheyn;V. Khachatryan;V. Khoze;S. Klein;M. Klundert;F. Krauss;A. Kurepin;N. Kurepin;K. Kutak;E. Kuznetsova;G. Latino;P. Lebiedowicz;B. Lenzi;E. Lewandowska;S. Liu;A. Luszczak;M. Luszczak;J. D. Madrigal;M. Mangano;Z. Marcone;Cyrille Marquet;Alan D. Martin;T. Martin;M. M. Hernández-M.;C. Martins;C. Mayer;R. Nulty;P. Mechelen;R. Macula;E. Costa;T. Mertzimekis;C. Mesropian;M. Mieskolainen;N. Minafra;I. Monzón;L. Mundim;B. Murdaca;M. Murray;H. Niewiadowski;J. Nystrand;E. G. Oliveira;R. Orava;S. Ostapchenko;K. Osterberg;A. Panagiotou;A. Papa;R. Pasechnik;T. Peitzmann;L. Moreno;T. Pierog;J. Pinfold;M. Poghosyan;M. Pol;W. Prado;V. Popov;M. Rangel;A. Reshetin;J. Revol;M. Rijssenbeek;M. Rodriguez;B. Roland;C. Royon;C. Royon;M. Ruspa;M. Ryskin;M. Ryskin;A. Vera;G. Safronov;T. Sako;H. Schindler;D. Šálek;K. Šafařík;M. Saimpert;A. Santoro;R. Schicker;J. Seger;S. Sen;A. Shabanov;W. Schäfer;G. G. Silveira-G.;P. Skands;R. Soluk;A. Spilbeeck;R. Staszewski;S. Stevenson;W. Stirling;M. Strikman;A. Szczurek;L. Szymanowski;J. D. T. Takaki;M. Tasevsky;K. Taesoo;C. Thomas;S. R. Torres;A. Tricomi;M. Trzebiński;D. Tsybychev;N. Turini;R. Ulrich;E. Usenko;J. Varela;M. Vetere;A. V. Tello;A. Pereira;D. Volyanskyy;S. Wallon;G. Wilkinson;H. Wöhrmann;K. Zapp;Y. Zoccarato
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Thorne其他文献
strongETV:SGSH, a brain-penetrant enzyme transport vehicle for SGSH, improves lysosomal and microglial morphology, degeneration and cognitive behavior in MPS IIIA mice/strong
StrongETV:SGSH,一种用于SGSH的脑渗透酶运输型酶,改善了MPS IIIA小鼠的溶酶体和小胶质细胞形态,退化和认知行为
- DOI:
10.1016/j.ymgme.2023.107954 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:3.500
- 作者:
Shababa T. Masoud;Hoang Nguyen;Claire Discenza;David Joy;Jeffrey Simms;Iris Lo;You Young Chun;Julia Holtzman;Khishig Tsogtbaatar;Amy Wing-Sze Leung;Isabel Becerra;Elliot Thomsen;Audrey Gill;Yashas Rajendra;Alexander Seay;Mohammad Jafarnejad;Anna Bakardjiev;Meredith E.K. Calvert;Cathal S. Mahon;Robert Thorne;Annie Arguello - 通讯作者:
Annie Arguello
<strong>ETV:SGSH, a brain-penetrant enzyme transport vehicle for SGSH, improves lysosomal and microglial morphology, degeneration and cognitive behavior in MPS IIIA mice</strong>
- DOI:
10.1016/j.ymgme.2023.107954 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:
- 作者:
Shababa T. Masoud;Hoang Nguyen;Claire Discenza;David Joy;Jeffrey Simms;Iris Lo;You Young Chun;Julia Holtzman;Khishig Tsogtbaatar;Amy Wing-Sze Leung;Isabel Becerra;Elliot Thomsen;Audrey Gill;Yashas Rajendra;Alexander Seay;Mohammad Jafarnejad;Anna Bakardjiev;Meredith E.K. Calvert;Cathal S. Mahon;Robert Thorne - 通讯作者:
Robert Thorne
The formation of fluvio-lacustrine ferruginous pisoliths in the extensive palaeochannels of the Yilgarn Craton, Western Australia
- DOI:
10.1016/j.sedgeo.2014.08.004 - 发表时间:
2014-11-01 - 期刊:
- 影响因子:
- 作者:
Robert Thorne;Ravi Anand;Alexandra Suvorova - 通讯作者:
Alexandra Suvorova
The Structure Functions and Low x Working Group Summary
结构功能和 Low x 工作组总结
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
V. Chekelian;C. Gwenlan;Robert Thorne - 通讯作者:
Robert Thorne
Detection of zinc deposits using terrestrial ferromanganese crusts
- DOI:
10.1016/j.oregeorev.2016.07.015 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Samuel C. Spinks;Yulia Uvarova;Robert Thorne;Ravinder Anand;Nathan Reid;Alistair White;Yusen Ley-Cooper;Nicki Bardwell;David Gray;Holly Meadows;Monica LeGras - 通讯作者:
Monica LeGras
Robert Thorne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Thorne', 18)}}的其他基金
Instrumentation and methods development for millisecond time-resolved studies of protein dynamics using quenching crystallography
使用淬灭晶体学进行毫秒时间分辨蛋白质动力学研究的仪器和方法开发
- 批准号:
2210041 - 财政年份:2022
- 资助金额:
$ 52.25万 - 项目类别:
Standard Grant
Particle Phenomenology, QCD and the Standard Model.
粒子现象学、QCD 和标准模型。
- 批准号:
ST/P000274/1 - 财政年份:2017
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
Preparing for a warmer future: Conformational ensembles, dynamics and interactions from variable temperature crystallography
为更温暖的未来做准备:变温晶体学的构象系综、动力学和相互作用
- 批准号:
1330685 - 财政年份:2013
- 资助金额:
$ 52.25万 - 项目类别:
Standard Grant
Theoretical Particle Physics Rolling Grant
理论粒子物理滚动资助
- 批准号:
ST/G000484/1 - 财政年份:2009
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
Nanoscale and Collective Physics of One-Dimensional Conductors
一维导体的纳米尺度和集体物理
- 批准号:
0805240 - 财政年份:2008
- 资助金额:
$ 52.25万 - 项目类别:
Continuing Grant
Global Fits for Parton Distributions and Implications for Hadron Collider Physics
帕顿分布的全局拟合及其对强子对撞机物理的影响
- 批准号:
PP/D507315/1 - 财政年份:2006
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
Meso- and Nano-Scale Physics in 1D and 2D Collective Transport
一维和二维集体输运中的介观和纳米尺度物理
- 批准号:
0405500 - 财政年份:2004
- 资助金额:
$ 52.25万 - 项目类别:
Continuing Grant
相似海外基金
Nuclear Physics Consolidated Grant
核物理综合拨款
- 批准号:
ST/Y000277/1 - 财政年份:2024
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
UofG Nuclear Physics Consolidated Grant
乔治城大学核物理综合拨款
- 批准号:
ST/Y000315/1 - 财政年份:2024
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
A consolidated grant for Sheffield Astrophysics - Transfer to Royal Holloway
谢菲尔德天体物理学综合赠款 - 转学到皇家霍洛威学院
- 批准号:
ST/Z000521/1 - 财政年份:2024
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
Edinburgh Nuclear Physics Consolidated Grant 2024-27
爱丁堡核物理综合赠款 2024-27
- 批准号:
ST/Y000293/1 - 财政年份:2024
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
Nuclear Physics Consolidated Grant 2023
核物理综合补助金 2023
- 批准号:
ST/Y000242/1 - 财政年份:2024
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
Birmingham Nuclear Physics Consolidated Grant 2023
伯明翰核物理综合赠款 2023
- 批准号:
ST/Y000331/1 - 财政年份:2024
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
Nuclear Physics Consolidated Grant 2023
核物理综合补助金 2023
- 批准号:
ST/Y000382/1 - 财政年份:2024
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
Birmingham Nuclear Physics Consolidated Grant 2023
伯明翰核物理综合赠款 2023
- 批准号:
ST/Y00034X/1 - 财政年份:2024
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
IUCRC Planning Grant University of Michigan: Center for Digital Twins for Consolidated Manufacturing Intelligence (DTCMI)
IUCRC 规划拨款密歇根大学:整合制造智能数字孪生中心 (DTCMI)
- 批准号:
2317070 - 财政年份:2023
- 资助金额:
$ 52.25万 - 项目类别:
Standard Grant














{{item.name}}会员




