Modelling Extreme Space Weather Events
极端太空天气事件建模
基本信息
- 批准号:ST/W004801/1
- 负责人:
- 金额:$ 68.45万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Space weather describes how activity on the Sun impacts our satellites in space and life here on Earth. The most extreme space weather events involve vast eruptions from the Sun, called "coronal mass ejections", or CMEs, which can travel towards Earth at millions of miles an hour. When they reach the influence of the Earth's magnetic field, the "magnetosphere", these CMEs trigger amazing auroral displays but can adversely affect satellites, communications and power grids. The coupled Sun-Earth system is, however, a complex dynamical environment with inter-related physical processes extending across scales ranging from less than a second to days, and from metres to millions of miles. Understanding and predicting the response of the magnetosphere, and trapped populations of energetic particles which form the hazardous "radiation belts", thus represents an immense challenge to the space physics and space weather communities, but one of increasing relevance as we move into the era of satellite mega-constellations and with humanity planning to establish a presence on the moon. This fellowship will focus on the modelling of extreme space weather events, using institutional and national high-performance-computing facilities. It is built upon three distinct recent advances; a heliospheric magnetohydrodynamic (MHD) model which can capture complex upstream phenomena originating at the Sun; the Gorgon MHD model which can capture the large-scale solar-wind-magnetosphere interaction; and an energetic Particle model which is integrated in Gorgon. The Particle model successfully scales to thousands of CPUs and can thus simulate ensembles of particles with characteristic sub-second timescales, across multi-day extreme space weather events. In order to understand the underlying physics, I will focus on a series of extreme events observed in the Space Age, as well as upcoming events during Solar Cycle 25 (2019-2030) where ESA's Solar Orbiter and NASA's Parker Solar Probe spacecraft are able to provide unprecedented insight from closer to the Sun.I will utilise this suite of simulation models to achieve three distinct goals: I will firstly comprehensively examine what solar wind conditions can rapidly create and destroy entire radiation belts. Following this, I will develop the advective Particle model to incorporate diffusive transport and tune this to match state-of-the art Fokker Planck Radiation Belt Models (RBMs). I will then directly identify and constrain advective transport processes, and determine appropriate diffusive-advective theories for improved radiation belt forecasting. Finally, I will self-consistently incorporate feedback from the particles into modified MHD equations, and study whether feedback from non-thermal particles produces a fundamentally different magnetospheric system or one that periodically diverges. This has far-reaching consequences for planetary magnetospheres and also extra-solar planetary magnetospheres where CMEs deriving from populous M stars play a significant role in defining habitability.
空间天气描述了太阳上的活动如何影响我们在太空中的卫星和地球上的生命。最极端的空间天气事件涉及太阳的大规模爆发,称为“日冕物质抛射”或CME,它可以以每小时数百万英里的速度向地球传播。当它们到达地球磁场的影响时,这些CME会引发惊人的极光显示,但会对卫星,通信和电网产生不利影响。然而,日地耦合系统是一个复杂的动态环境,其相互关联的物理过程跨越从不到一秒到几天,从几米到几百万英里的尺度。因此,了解和预测磁层的反应以及形成危险的“辐射带”的被困高能粒子群是对空间物理学和空间气象界的一项巨大挑战,但随着我们进入卫星巨型星座时代和人类计划在月球上建立存在,这一挑战也越来越重要。该研究金将侧重于利用机构和国家高性能计算设施对极端空间气象事件进行建模。它是建立在三个不同的最新进展:日光层磁流体动力学(MHD)模型,可以捕捉复杂的上游现象起源于太阳; Gorgon MHD模型,可以捕捉大规模的太阳风磁层相互作用;和高能粒子模型,这是集成在Gorgon。粒子模型成功地扩展到数千个CPU,因此可以模拟具有特征亚秒时间尺度的粒子集合,跨越多日极端空间天气事件。为了理解潜在的物理学,我将重点关注太空时代观察到的一系列极端事件,以及太阳活动周期25期间即将发生的事件(2019-2030),欧空局的太阳轨道器和美国宇航局的帕克太阳探测器航天器能够从更接近太阳的地方提供前所未有的洞察力。我将利用这套模拟模型来实现三个不同的目标:我将首先全面研究什么样的太阳风条件可以迅速创造和摧毁整个辐射带。在此之后,我将开发平流粒子模型,以纳入扩散传输,并调整它以匹配最先进的福克普朗克辐射带模型(RBM)。然后,我将直接识别和约束平流输送过程,并确定适当的扩散平流理论,以改善辐射带预报。最后,我将自洽地将粒子反馈纳入修正的MHD方程,并研究来自非热粒子的反馈是否会产生一个根本不同的磁层系统或周期性发散的系统。这对行星磁层和太阳系外行星磁层有着深远的影响,其中来自人口众多的M星的CME在定义可居住性方面发挥着重要作用。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resolving Multiscale Magnetospheric and Radiation Belt Dynamics using Global MHD, Test Particle and Fokker Planck Simulations
使用全球 MHD、测试粒子和福克普朗克模拟求解多尺度磁层和辐射带动力学
- DOI:10.5194/egusphere-egu23-5526
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Desai R
- 通讯作者:Desai R
Quantifying the global solar wind-magnetosphere interaction with the Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM) mission concept
- DOI:10.3389/fspas.2023.1138616
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:D. Sibeck;K. Murphy;F. Porter;H. Connor;B. Walsh;K. Kuntz;E. Zesta;P. Valek;Charles Baker;J. Goldstein;H. Frey;S. Hsieh;P. Brandt;R. Gomez;G. DiBraccio;S. Kameda;Vivek Dwivedi;M. Purucker;M. Shoemaker;S. Petrinec;Homayon Aryan;R. Desai;M. Henderson;G. Cucho‐Padin;W. Cramer
- 通讯作者:D. Sibeck;K. Murphy;F. Porter;H. Connor;B. Walsh;K. Kuntz;E. Zesta;P. Valek;Charles Baker;J. Goldstein;H. Frey;S. Hsieh;P. Brandt;R. Gomez;G. DiBraccio;S. Kameda;Vivek Dwivedi;M. Purucker;M. Shoemaker;S. Petrinec;Homayon Aryan;R. Desai;M. Henderson;G. Cucho‐Padin;W. Cramer
Formation and identification of Kelvin-Helmholtz generated vortices at Earths magnetopause: Insight from adapting hydrodynamic techniques for MHD
地球磁层顶开尔文-亥姆霍兹涡旋的形成和识别:采用 MHD 流体动力学技术的见解
- DOI:10.5194/egusphere-egu23-6613
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kelly H
- 通讯作者:Kelly H
Magnetospheric compressions, magnetopause shadowing and the last-closed-drift-shell
磁层压缩、磁层顶阴影和最后闭合的漂移壳
- DOI:10.5194/egusphere-egu22-1765
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Desai R
- 通讯作者:Desai R
Simulating Secondary Electron and Ion Emission from the Cassini Spacecraft in Saturn's Ionosphere
模拟卡西尼号飞船在土星电离层中的二次电子和离子发射
- DOI:10.3847/psj/acd844
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhang Z
- 通讯作者:Zhang Z
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ravindra Desai其他文献
Ravindra Desai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Developing the capability to forecast extreme Space Weather events
发展预测极端空间天气事件的能力
- 批准号:
2887653 - 财政年份:2023
- 资助金额:
$ 68.45万 - 项目类别:
Studentship
AccelNet-Design: Extreme Light in Space, Intensity, Time and Space(X-lites)
AccelNet-Design:空间、强度、时间和空间中的极端光(X-lites)
- 批准号:
2201502 - 财政年份:2022
- 资助金额:
$ 68.45万 - 项目类别:
Standard Grant
Design of a Portable Bio-Inspired Vibro-Based Burrowing Probe for Space Mining and Subsurface Investigation of Extreme Environments
用于太空采矿和极端环境地下调查的便携式仿生振动挖掘探头的设计
- 批准号:
571285-2022 - 财政年份:2021
- 资助金额:
$ 68.45万 - 项目类别:
Idea to Innovation
A preliminary study for magnitude estimates and quantitative comparisons of the extreme space weather events based on the early modern analog observational records
基于现代早期模拟观测记录的极端空间天气事件震级估算与定量比较初步研究
- 批准号:
20K22367 - 财政年份:2020
- 资助金额:
$ 68.45万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Foods for space and remote off-sites on Earth: Late stage customization of food materials in extreme environments.
太空和地球上偏远场外的食品:极端环境下食品材料的后期定制。
- 批准号:
2269599 - 财政年份:2019
- 资助金额:
$ 68.45万 - 项目类别:
Studentship
PREEVENTS Track 2: Integrated Modeling of Extreme Space Weather Events from Electron to Global Scales
预防事件轨道 2:从电子到全球尺度的极端空间天气事件的综合建模
- 批准号:
1663800 - 财政年份:2017
- 资助金额:
$ 68.45万 - 项目类别:
Continuing Grant
Probing the Energetics of Extreme Space Weather.
探索极端太空天气的能量。
- 批准号:
438764-2013 - 财政年份:2015
- 资助金额:
$ 68.45万 - 项目类别:
Postdoctoral Fellowships
Probing the Energetics of Extreme Space Weather.
探索极端太空天气的能量。
- 批准号:
438764-2013 - 财政年份:2014
- 资助金额:
$ 68.45万 - 项目类别:
Postdoctoral Fellowships
Large-Scale Particle Simulations on Spacecraft Interactions with Extreme Space Plasma Environment
航天器与极端空间等离子体环境相互作用的大规模粒子模拟
- 批准号:
25870421 - 财政年份:2013
- 资助金额:
$ 68.45万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Probing the Energetics of Extreme Space Weather.
探索极端太空天气的能量。
- 批准号:
438764-2013 - 财政年份:2013
- 资助金额:
$ 68.45万 - 项目类别:
Postdoctoral Fellowships