Quantum-enhanced Interferometry for New Physics: QI-extension proposal

新物理学的量子增强干涉测量:QI 扩展提案

基本信息

  • 批准号:
    ST/W006375/1
  • 负责人:
  • 金额:
    $ 10.02万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Modern physics explains a stunning variety of phenomena from the smallest of scales to the largest and has already revolutionized the world! Lasers, semiconductors, and transistors are at the core of our laptops, mobile phones, and medical equipment. These technologies in turn have enabled us to explore the natural world with ever greater detail, precision, and rigour.Over the last few years, novel quantum technologies are being developed within the National Quantum Technology Programme in the UK and throughout the world that could impact our everyday lives and enable fundamental physics research that leads to new discoveries. Quantum states of light have recently improved the sensitivity of gravitational-wave detectors, whose detections to date have enthralled the public, and superconducting transition-edge-sensors are now used in telescopes that capture high-resolution images of the universe.Despite these successes of modern physics, several profound and challenging questions remain open. Our consortium QI-extension will build on recent advances in quantum technologies, both within our existing consortium QI and beyond, to address two of the most pressing questions: (i) What is the nature of dark matter, and (ii) How can quantum mechanics be united with Einstein's theory of relativity?The first research direction is motivated by numerous observations which suggest that a significant fraction of the matter in galaxies is not directly observed by optical telescopes. Understanding the nature of this mysterious so-called dark matter will shed light on the history of the universe and will trigger new areas of research in fundamental and possibly applied physics. A number of state-of-the-art experiments world-wide are looking for dark matter candidates with no luck so far. The candidates we propose to search for are axions and axion-like-particles (ALPs). These particles are motivated by outstanding questions in particle physics and may account for a significant part, or all of dark matter. First, we will enhance the sensitivity of our current experiment that will detect a dark matter signal or improve the existing limits on the axion-photon coupling by a few orders of magnitude for a large range of axion masses. Second, we will build and characterise a large (8''/200 nm diameter) superconducting nanowire single photon detector to extend dark matter searches.Our second line of research is devoted to the nature of space and time. We have a long list of successful experimental tests of quantum mechanics and Einstein's theory of relativity. But should gravity be united with quantum mechanics? If so, how? As with any open question in physics, experiments can direct us towards the answers.To that end, we propose to study two quantum aspects of space-time. Firstly, we will experimentally investigate the holographic principle, which states that the information content of a volume can be encoded on its boundary. We will exploit quantum states of light and build two ultra-sensitive laser interferometers that will investigate possible correlations between different regions of space with unprecedented sensitivity. We will also use the data to search for scalar dark matter in the galactic halo.Secondly, we will search for signatures of semiclassical gravity models that approximately solve the quantum gravity problems. Building on our existing work on experimentally testing semiclassical models of gravity, we will seek to design table-top experiments that may provide direct signatures of the quantum nature of gravity.Answering these challenging questions of fundamental physics with the aid of modern quantum technologies has the potential to open new horizons for physics research and to reach a new level of understanding of the world we live in. The proposed research directions share the common technological platform of quantum-enhanced interferometry and benefit from the diverse skills of the researchers involved.
现代物理学解释了从最小的量表到最大的一种令人惊叹的现象,并且已经彻底改变了世界!激光,半导体和晶体管是我们笔记本电脑,手机和医疗设备的核心。这些技术反过来又使我们能够以更大的细节,精度和性能来探索自然世界。在过去的几年中,在英国国家量子技术计划中以及全世界以及可能影响我们的日常生活并启用带来新发现的基本物理学研究的新型量子技术。量子状态最近改善了引力波探测器的敏感性,其迄今为止的检测吸引了公众,现在在望远镜中使用了超导过渡 - 传感器,这些望远镜捕获了宇宙的高分辨率图像。在现代物理学的这些成功,几个深刻而挑战性的问题上仍然开放。我们的联盟扩大将基于量子技术的最新进展,无论是在我们现有的联盟QI及其他方面,要解决两个最紧迫的问题:(i)暗物质的本质是什么,以及(ii)量子力学如何与爱因斯坦的相对论相结合,这是通过许多观察到的众多观察的激励,这表明了一项重要的范围,这是一个重要的事物,这是一个重要的事物。了解这种神秘的所谓暗物质的性质将阐明宇宙的历史,并会引发基本和可能应用物理学的新研究领域。到目前为止,全世界的许多最先进的实验都在寻找没有运气的候选人。我们建议搜索的候选人是轴和轴测样粒子(ALP)。这些粒子是出于粒子物理学中的杰出问题而动机,可能是重要的部分或所有暗物质。首先,我们将增强当前实验的灵敏度,该实验将检测到暗物质信号或改善轴突 - 光子耦合的现有限制,以在大量的轴突质量上提高几个数量级。其次,我们将构建并表征大型(8'''/200 nm)超导纳米线单光子检测器以扩展暗物质搜索。我们的第二线研究专门用于时空的性质。我们对量子力学和爱因斯坦的相对论的成功实验测试很长。但是重力应该与量子力学结合在一起吗?如果是这样,怎么样?与物理学上的任何开放问题一样,实验可以将我们引导到答案。为此,我们建议研究时空的两个量子方面。首先,我们将通过实验研究全息原理,该原理指出可以在其边界上编码音量的信息含量。我们将利用光的量子状态,并建立两个超敏感的激光干涉仪,这些激光干涉仪将研究与前所未有的灵敏度之间的不同空间区域之间可能的相关性。我们还将使用数据在银河光环中搜索标量暗物质。第二,我们将搜索大约解决量子重力问题的半经典重力模型的签名。在我们现有的实验测试重力模型上的现有工作的基础上,我们将寻求设计桌面实验,这些实验可能直接提供重力的量子性质的签名。解决现代量子技术的基本物理学的这些挑战性问题,借助现代量子技术的帮助,可以为量子的研究提供了对量子的新技术的开放范围,以开放新的水平,我们将对量子进行新的研究,我们将在我们的范围内进行新的研究。干涉和受益于所涉研究人员的多样化技能。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
First results of the Laser-Interferometric Detector for Axions (LIDA)
轴子激光干涉探测器 (LIDA) 的第一个结果
  • DOI:
    10.48550/arxiv.2307.01365
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heinze J
  • 通讯作者:
    Heinze J
Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO’s and Advanced Virgo’s Third Observing Run
在 Advanced LIGO 和 Advanced Virgo 第三次观测运行的前半段中搜索太阳质量以下的双星
  • DOI:
    10.1103/physrevlett.129.061104
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Abbott, R.;Abbott, T. D.;Acernese, F.;Ackley, K.;Adams, C.;Adhikari, N.;Adhikari, R. X.;Adya, V. B.;Affeldt, C.;Agarwal, D.
  • 通讯作者:
    Agarwal, D.
Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runs
在第二次和第三次 LIGO-Virgo 观测运行中搜索来自已知脉冲星的两个谐波的引力波
  • DOI:
    10.3847/1538-4357/ac6acf
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abbott, R.;Abe, H.;Acernese, F.;Ackley, K.;Adhikari, N.;Adhikari, R. X.;Adkins, V. K.;Adya, V. B.;Affeldt, C.;Agarwal, D.
  • 通讯作者:
    Agarwal, D.
Enhancing the sensitivity of interferometers with stable phase-insensitive quantum filters
使用稳定的相位不敏感量子滤波器提高干涉仪的灵敏度
  • DOI:
    10.1103/physrevd.106.022007
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Dmitriev A
  • 通讯作者:
    Dmitriev A
Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run
在 LIGO-Virgo 第三次观测中,窄带搜索来自已知脉冲星的连续且长时间的瞬态引力波
  • DOI:
    10.3847/1538-4357/ac6ad0
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. P. Abbott;H. Shinkai;LIGO-Virgo-KAGRA collaboration
  • 通讯作者:
    LIGO-Virgo-KAGRA collaboration
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Denis Martynov其他文献

DarkGEO: A Large-Scale Laser-Interferometric Axion Detector
DarkGEO:大型激光干涉轴子探测器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Joscha Heinze;Alex Gill;A. Dmitriev;Jiri Smetana;T. Yan;Vincent Boyer;Denis Martynov;H. Grote;James Lough;A. Ejlli;Guido Mueller
  • 通讯作者:
    Guido Mueller

Denis Martynov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Denis Martynov', 18)}}的其他基金

Phase-insensitive amplifier for quantum measurements
用于量子测量的相敏放大器
  • 批准号:
    EP/V048872/1
  • 财政年份:
    2021
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Research Grant
Coating thermal noise measurement with a multimode resonator
使用多模谐振器测量涂层热噪声
  • 批准号:
    EP/V008617/1
  • 财政年份:
    2021
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Research Grant
Quantum-enhanced interferometry for new physics
新物理学的量子增强干涉测量
  • 批准号:
    ST/T006609/1
  • 财政年份:
    2020
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Research Grant
Gravitational Wave Astronomy at the University of Birmingham, STFC Equipment Call 2018
伯明翰大学引力波天文学,STFC 设备电话会议 2018
  • 批准号:
    ST/S002154/1
  • 财政年份:
    2018
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Research Grant

相似国自然基金

基于协同增强子的遗传变异交互作用在胃癌发生中的关联及机制研究
  • 批准号:
    82304224
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PDT疗效系统增强型硫代尼罗蓝光敏剂的构建及其抗恶性实体瘤研究
  • 批准号:
    22368036
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于核酸四面体“信号增强塔”的微针分子识别系统在炎症因子风暴多层面实时监测中的研究和应用
  • 批准号:
    22374029
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
原子层沉积Pt表面等离激元增强氧化镓单晶薄膜的紫外探测性能研究
  • 批准号:
    62304129
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
催化/传热协同诱导高熵Li2TiO3晶界调控及释氚增强机制
  • 批准号:
    52302075
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Increasing the science reach for Quantum Enhanced Interferometry.
扩大量子增强干涉测量的科学范围。
  • 批准号:
    ST/W006456/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Research Grant
Quantum-enhanced Interferometry for New Physics - Extension
新物理学的量子增强干涉测量 - 扩展
  • 批准号:
    ST/W006308/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Research Grant
Extension to the 'Quantum-enhanced Interferometry for New Physics' programme
“新物理量子增强干涉测量”计划的扩展
  • 批准号:
    ST/W00643X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Research Grant
Quantum enhanced interferometry for new physics
新物理学的量子增强干涉测量
  • 批准号:
    2569982
  • 财政年份:
    2021
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Studentship
Quantum-enhanced interferometry for new physics
新物理学的量子增强干涉测量
  • 批准号:
    ST/T006404/1
  • 财政年份:
    2020
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了