Quantum-enhanced interferometry for new physics
新物理学的量子增强干涉测量
基本信息
- 批准号:ST/T006609/1
- 负责人:
- 金额:$ 209.19万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern physics explains a stunning variety of phenomena from the smallest of scales to the largest and has already revolutionized the world! Lasers, semi-conductors, and transistors are at the core of our laptops, cellphones, and medical equipment. And every year, new novel quantum technologies are being developed within the National Quantum Technology Programme in the UK and throughout the world that impact our everyday life and the fundamental physics research that leads to new discoveries. Quantum states of light have recently improved the sensitivity of gravitational-wave detectors, whose detections to date have enthralled the public, and superconducting transition-edge-sensors are now used in astronomy experiments that make high-resolution images of the universe. Despite the successes of modern physics, several profound and challenging problems remain. Our consortium will use recent advances in quantum technologies to address two of the most pressing questions: (i) what is the nature of dark matter and (ii) how can quantum mechanics be united with Einstein's theory of relativity?The first research direction is motivated by numerous observations which suggest that a significant fraction of the matter in galaxies is not directly observed by optical telescopes. This mysterious matter interacts gravitationally but does not seem to emit any light. Understanding the nature of dark matter will shed light on the history of the universe and the formation of galaxies and will trigger new areas of research in fundamental and possibly applied physics. Despite its remarkable importance, the nature of dark matter is still a mystery. A number of state-of-the-art experiments world-wide are looking for dark matter candidates with no luck to date. The candidate we propose to search for are axions and axion-like-particles (ALPs). These particles are motivated by outstanding questions in particle physics and may account for a significant part, if not all, of dark matter. First, we propose an experiment which will rely on quantum states of light and will detect a dark matter signal or improve the existing limits on the axion-photon coupling by a few orders of magnitude for a large range of axion masses. Second, we will build a quantum sensor which will improve the sensitivity of the international 100-m long ALPS detector of axion-like-particles by a factor of 3 - 10.Our second line of research is devoted to the nature of space and time. Recent announcements of Google's Sycamore quantum computer and the detection of gravitational waves have provided additional evidence to the long list of successful experimental tests of quantum mechanics and Einstein's theory of relativity. But how can gravity be united with quantum mechanics? To seek answers that inform this question, we propose to study two quantum aspects of space-time. First, we will experimentally investigate the holographic principle, which states that the information content of a volume can be encoded on its boundary. We will exploit quantum states of light and build two ultra-sensitive laser interferometers that will investigate possible correlations between different regions of space with unprecedented sensitivity. Second, we will search for signatures of semiclassical gravity models that approximately solve the quantum gravity problems. We will build two optical interferometers and search for the first time for signatures of semiclassical gravity in the motion of the cryogenic silicon mirrors.Answering these challenging questions of fundamental physics with the aid of modern quantum technologies has the potential to open new horizons for physics research and to reach a new level of understanding of the world we live in. The proposed research directions share the common technological platform of quantum-enhanced interferometry and benefit from the diverse skills of the researchers involved in the programme.
现代物理学解释了从最小尺度到最大尺度的各种惊人的现象,并且已经彻底改变了世界!激光、半导体和晶体管是我们的笔记本电脑、手机和医疗设备的核心。每年,英国和世界各地的国家量子技术计划都在开发新的量子技术,这些技术影响着我们的日常生活和导致新发现的基础物理研究。光的量子态最近提高了引力波探测器的灵敏度,迄今为止,引力波探测器的探测已经吸引了公众,超导过渡边缘传感器现在被用于天文实验,可以制作出高分辨率的宇宙图像。尽管现代物理学取得了成功,但仍然存在一些深刻而具有挑战性的问题。我们的联盟将利用量子技术的最新进展来解决两个最紧迫的问题:(1)暗物质的本质是什么;(2)如何将量子力学与爱因斯坦的相对论结合起来?第一个研究方向是由大量的观测所推动的,这些观测表明,星系中有很大一部分物质是光学望远镜无法直接观测到的。这种神秘的物质有引力作用,但似乎不发出任何光。了解暗物质的本质将揭示宇宙的历史和星系的形成,并将引发基础物理学和应用物理学的新研究领域。尽管它非常重要,但暗物质的本质仍然是一个谜。世界范围内许多最先进的实验都在寻找暗物质的候选者,但到目前为止还没有运气。我们建议寻找的候选者是轴子和类轴子粒子(ALPs)。这些粒子是由粒子物理学中悬而未决的问题激发的,如果不是暗物质的全部,也可能是暗物质的重要组成部分。首先,我们提出了一个实验,该实验将依赖于光的量子态,并将探测暗物质信号或将现有的轴子-光子耦合限制提高几个数量级,用于大范围的轴子质量。第二,构建量子传感器,将国际100m长的ALPS探测器对类轴子粒子的灵敏度提高3 - 10倍。我们的第二个研究方向是空间和时间的本质。b谷歌最近宣布的Sycamore量子计算机和引力波探测为量子力学和爱因斯坦相对论的成功实验测试提供了额外的证据。但是如何将引力与量子力学结合起来呢?为了寻找这个问题的答案,我们建议研究时空的两个量子方面。首先,我们将实验研究全息原理,该原理表明体积的信息内容可以在其边界上编码。我们将利用光的量子态,建造两个超灵敏的激光干涉仪,以前所未有的灵敏度研究空间不同区域之间可能的相关性。其次,我们将寻找近似解决量子引力问题的半经典引力模型的特征。我们将建立两个光学干涉仪,并首次在低温硅镜的运动中寻找半经典重力的特征。在现代量子技术的帮助下,回答这些具有挑战性的基础物理学问题,有可能为物理学研究开辟新的视野,并达到对我们生活的世界的理解的新水平。提出的研究方向共享量子增强干涉测量的共同技术平台,并受益于参与该计划的研究人员的不同技能。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run
在 LIGO-Virgo 第三次观测中,窄带搜索来自已知脉冲星的连续且长时间的瞬态引力波
- DOI:10.3847/1538-4357/ac6ad0
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:B. P. Abbott;H. Shinkai;LIGO-Virgo-KAGRA collaboration
- 通讯作者:LIGO-Virgo-KAGRA collaboration
Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO’s and Advanced Virgo’s Third Observing Run
在 Advanced LIGO 和 Advanced Virgo 第三次观测运行的前半段中搜索太阳质量以下的双星
- DOI:10.1103/physrevlett.129.061104
- 发表时间:2022
- 期刊:
- 影响因子:8.6
- 作者:Abbott, R.;Abbott, T. D.;Acernese, F.;Ackley, K.;Adams, C.;Adhikari, N.;Adhikari, R. X.;Adya, V. B.;Affeldt, C.;Agarwal, D.
- 通讯作者:Agarwal, D.
Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runs
在第二次和第三次 LIGO-Virgo 观测运行中搜索来自已知脉冲星的两个谐波的引力波
- DOI:10.3847/1538-4357/ac6acf
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Abbott, R.;Abe, H.;Acernese, F.;Ackley, K.;Adhikari, N.;Adhikari, R. X.;Adkins, V. K.;Adya, V. B.;Affeldt, C.;Agarwal, D.
- 通讯作者:Agarwal, D.
Enhancing the sensitivity of interferometers with stable phase-insensitive quantum filters
使用稳定的相位不敏感量子滤波器提高干涉仪的灵敏度
- DOI:10.1103/physrevd.106.022007
- 发表时间:2022
- 期刊:
- 影响因子:5
- 作者:Dmitriev A
- 通讯作者:Dmitriev A
Sensitivity and performance of the Advanced LIGO detectors in the third observing run
- DOI:10.1103/physrevd.102.062003
- 发表时间:2020-09-11
- 期刊:
- 影响因子:5
- 作者:Buikema, A.;Cahillane, C.;Zweizig, J.
- 通讯作者:Zweizig, J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Denis Martynov其他文献
DarkGEO: A Large-Scale Laser-Interferometric Axion Detector
DarkGEO:大型激光干涉轴子探测器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.3
- 作者:
Joscha Heinze;Alex Gill;A. Dmitriev;Jiri Smetana;T. Yan;Vincent Boyer;Denis Martynov;H. Grote;James Lough;A. Ejlli;Guido Mueller - 通讯作者:
Guido Mueller
Denis Martynov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Denis Martynov', 18)}}的其他基金
Quantum-enhanced Interferometry for New Physics: QI-extension proposal
新物理学的量子增强干涉测量:QI 扩展提案
- 批准号:
ST/W006375/1 - 财政年份:2022
- 资助金额:
$ 209.19万 - 项目类别:
Research Grant
Phase-insensitive amplifier for quantum measurements
用于量子测量的相敏放大器
- 批准号:
EP/V048872/1 - 财政年份:2021
- 资助金额:
$ 209.19万 - 项目类别:
Research Grant
Coating thermal noise measurement with a multimode resonator
使用多模谐振器测量涂层热噪声
- 批准号:
EP/V008617/1 - 财政年份:2021
- 资助金额:
$ 209.19万 - 项目类别:
Research Grant
Gravitational Wave Astronomy at the University of Birmingham, STFC Equipment Call 2018
伯明翰大学引力波天文学,STFC 设备电话会议 2018
- 批准号:
ST/S002154/1 - 财政年份:2018
- 资助金额:
$ 209.19万 - 项目类别:
Research Grant
相似国自然基金
噬菌体靶向肠道粪肠球菌提高帕金森病左旋多巴疗效的机制研究
- 批准号:82371251
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PIC: Slow Wave Enhanced Electrooptically Tuned Michelson Interferometer Biosensor for On-Chip Dual Polarization Interferometry
合作研究:PIC:用于片上双偏振干涉测量的慢波增强型电光调谐迈克尔逊干涉仪生物传感器
- 批准号:
2210722 - 财政年份:2022
- 资助金额:
$ 209.19万 - 项目类别:
Standard Grant
Increasing the science reach for Quantum Enhanced Interferometry.
扩大量子增强干涉测量的科学范围。
- 批准号:
ST/W006456/1 - 财政年份:2022
- 资助金额:
$ 209.19万 - 项目类别:
Research Grant
Collaborative Research: PIC: Slow Wave Enhanced Electrooptically Tuned Michelson Interferometer Biosensor for On-Chip Dual Polarization Interferometry
合作研究:PIC:用于片上双偏振干涉测量的慢波增强型电光调谐迈克尔逊干涉仪生物传感器
- 批准号:
2210707 - 财政年份:2022
- 资助金额:
$ 209.19万 - 项目类别:
Standard Grant
Quantum-enhanced Interferometry for New Physics - Extension
新物理学的量子增强干涉测量 - 扩展
- 批准号:
ST/W006308/1 - 财政年份:2022
- 资助金额:
$ 209.19万 - 项目类别:
Research Grant
Extension to the 'Quantum-enhanced Interferometry for New Physics' programme
“新物理量子增强干涉测量”计划的扩展
- 批准号:
ST/W00643X/1 - 财政年份:2022
- 资助金额:
$ 209.19万 - 项目类别:
Research Grant
Quantum-enhanced Interferometry for New Physics: QI-extension proposal
新物理学的量子增强干涉测量:QI 扩展提案
- 批准号:
ST/W006375/1 - 财政年份:2022
- 资助金额:
$ 209.19万 - 项目类别:
Research Grant
Quantum enhanced interferometry for new physics
新物理学的量子增强干涉测量
- 批准号:
2569982 - 财政年份:2021
- 资助金额:
$ 209.19万 - 项目类别:
Studentship
Optical Lattice Engineering for Enhanced Interferometry and Sensing with Yb Atoms
用于增强 Yb 原子干涉测量和传感的光学晶格工程
- 批准号:
2110164 - 财政年份:2021
- 资助金额:
$ 209.19万 - 项目类别:
Continuing Grant
Quantum-enhanced interferometry for new physics
新物理学的量子增强干涉测量
- 批准号:
ST/T006404/1 - 财政年份:2020
- 资助金额:
$ 209.19万 - 项目类别:
Research Grant
Optical imaging of neural activity based on the Lorentz effect
基于洛伦兹效应的神经活动光学成像
- 批准号:
9977534 - 财政年份:2020
- 资助金额:
$ 209.19万 - 项目类别: