MATHEMATICAL MODELS IN PHARMACODYNAMICS

药效学中的数学模型

基本信息

项目摘要

DESCRIPTION (Adapted from Investigator's Abstract): The major factors determining pharmacologic drug responses are the input and disposition rates controlling pharmacokinetics, drug distribution to the site of action (biophase), the mechanism of drug action in altering mediator or receptor levels, and transduction processes which follow the latter. The Principal Investigator has developed a family of four indirect response (IDR) models to account for drug action on the mediators of the response rather than directly causing the response. Because these IDR models along with added complexities currently require analysis using differential equations which often cannot be fully integrated, the Principal Investigator proposes to use advanced methods for calculus and simulation to seek exact or approximate solutions or behaviors for such models in order to yield improved insights and methods for understanding the time course of drug response as related to major mechanisms of action. This project seeks to characterize and quantify the problem of drugs acting by direct and indirect mechanisms. Specific aims include: elucidating properties of IDR when drug is given by short and long-term infusions, identifying parameters determining the linear return rates of responses, using moment analysis to characterize experimental data, dealing with variable baseline behaviors, addition of a precursor compartment to account for tolerance and rebound effects, and applying irreversible rather than reversible inhibition of the response variable. Advanced methods of calculus and simulations will be employed to seek exact or approximate solutions or behaviors for these models, to identify how the onset, extent, return, duration, AUC, and mean times of responses are controlled, to recover parameters more easily from experimental data, and to discriminate among diverse models available to describe various, types of data. These efforts should yield improved insights and methods for understanding the time course of drug responses as related to major mechanisms of action.
描述(改编自研究者摘要):主要因素

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WILLIAM J. JUSKO其他文献

WILLIAM J. JUSKO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WILLIAM J. JUSKO', 18)}}的其他基金

Mechanistic Pharmacokinetics and Pharmacodynamics
机制药代动力学和药效学
  • 批准号:
    10393534
  • 财政年份:
    2019
  • 资助金额:
    $ 4.39万
  • 项目类别:
Mechanistic Pharmacokinetics and Pharmacodynamics
机制药代动力学和药效学
  • 批准号:
    10614070
  • 财政年份:
    2019
  • 资助金额:
    $ 4.39万
  • 项目类别:
Mechanistic Pharmacokinetics and Pharmacodynamics
机制药代动力学和药效学
  • 批准号:
    9922338
  • 财政年份:
    2019
  • 资助金额:
    $ 4.39万
  • 项目类别:
CORTICOSTEROID PHARMACOKINETICS & PHARMACODYNAMICS
皮质类固醇药代动力学
  • 批准号:
    6611244
  • 财政年份:
    2002
  • 资助金额:
    $ 4.39万
  • 项目类别:
CORTICOSTEROID PHARMACOKINETICS & PHARMACODYNAMICS
皮质类固醇药代动力学
  • 批准号:
    6480880
  • 财政年份:
    2001
  • 资助金额:
    $ 4.39万
  • 项目类别:
CORTICOSTEROID PHARMACOKINETICS & PHARMACODYNAMICS
皮质类固醇药代动力学
  • 批准号:
    6205820
  • 财政年份:
    1999
  • 资助金额:
    $ 4.39万
  • 项目类别:
Mathematical Models in Pharmacodynamics
药效学数学模型
  • 批准号:
    7094873
  • 财政年份:
    1998
  • 资助金额:
    $ 4.39万
  • 项目类别:
Mathematical Models in Pharmacodynamics
药效学数学模型
  • 批准号:
    8324873
  • 财政年份:
    1998
  • 资助金额:
    $ 4.39万
  • 项目类别:
Mathematical Models in Pharmacodynamics
药效学数学模型
  • 批准号:
    7983378
  • 财政年份:
    1998
  • 资助金额:
    $ 4.39万
  • 项目类别:
Mathematical Models in Pharmacodynamics
药效学数学模型
  • 批准号:
    7390715
  • 财政年份:
    1998
  • 资助金额:
    $ 4.39万
  • 项目类别:

相似海外基金

Calculation and the Verification of the maximum electric power of Microbial Fuel Cells by Minimizing the Internal Resistance Using the Mathematical Model
微生物燃料电池内阻最小化最大电功率的数学模型计算与验证
  • 批准号:
    23K11483
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advancement of mathematical model and visualization method for cognition of relation between micro and macro phenomena
认知微观与宏观现象关系的数学模型和可视化方法的进展
  • 批准号:
    23K11128
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction and analysis of a hybrid mathematical model describing the dynamics of bacterial cellular society
描述细菌细胞社会动态的混合数学模型的构建和分析
  • 批准号:
    23K03208
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
  • 批准号:
    10734486
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
Noncontact Measurement of Multiple Sites of Multiple People Using Array Radar Signal Processing Based on Mathematical Model of Body Displacement
基于人体位移数学模型的阵列雷达信号处理非接触多人多部位测量
  • 批准号:
    23H01420
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical model to simulate SARS-CoV-2 infection within-host
模拟宿主内 SARS-CoV-2 感染的数学模型
  • 批准号:
    EP/W007355/1
  • 财政年份:
    2022
  • 资助金额:
    $ 4.39万
  • 项目类别:
    Research Grant
A mathematical model of colloidal membrane vesicle formation
胶体膜囊泡形成的数学模型
  • 批准号:
    567961-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.39万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Towards A Mathematical Model For Spacetimes With Multiple Histories
建立具有多重历史的时空数学模型
  • 批准号:
    577586-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.39万
  • 项目类别:
    University Undergraduate Student Research Awards
Mathematical model for quantitatively analysis the pathophysiological characteristics of mouse photoreceptor cell
定量分析小鼠感光细胞病理生理特征的数学模型
  • 批准号:
    22K20514
  • 财政年份:
    2022
  • 资助金额:
    $ 4.39万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Mathematical model of internal standard selection criteria for accurate quantitative analysis
精确定量分析内标选择标准的数学模型
  • 批准号:
    22K10604
  • 财政年份:
    2022
  • 资助金额:
    $ 4.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了