BIOMECHANICS OF LEUKOCYTE ADHESION MOLECULES
白细胞粘附分子的生物力学
基本信息
- 批准号:6390646
- 负责人:
- 金额:$ 61.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-28 至 2004-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This application proposes interdisciplinary bioengineering research in the area of molecular biomechanics. Leukocyte and endothelial adhesion molecules govern the trafficking of cells in inflammation, immunity, cancer mestastasis and other processes. Some adhesion molecules, among them the selectins, are specialized to mediate adhesion in the presence of blood flow. Pressure-driven blood flow is associated with a shear stress exerted on the vessel wall, which results in a force on leukocytes and other cells trying to adhere to the endothelium. It is believed that adhesion under shear stress requires adhesion molecules with rapid association rates (on-rates), resulting in rapid formation of bonds. In vitro experiments and modeling studies indicate that the selectins also have high rates of bond dissociation (off-rates). Preliminary data suggest that the off-rates of selectins vary systematically with the shearing force exerted on the cell bound by the selectin (reactive compliance or tensile strength). In addition, the release of at least one of the selectins is accelerated by proteolytic cleavage by a surface-bound or membrane integral metalloproteinase. The current proposal has four specific aims. (1) To measure the bond lifetimes and apparent off-rates of L-, P- and E-selectin bound to their natural ligands. (2) To determine the role of L-selectin shedding in regulating leukocyte adhesion and selectin kinetics. (3) To determine the impact of the selectin length and their cytoplasmic tail for the biomechanics of adhesion under shear flow. (4) To design and build beads, liposomes and gas-filled bubbles (ultrasound contrast agents) that use leukocyte adhesion molecules to bind to vessel walls under shear stress. Each of these aims is approached in a three-pronged fashion. We propose to use laser trapping technology to directly measure biomechanical and kinetic parameters of selectin bonds, use single cells on sparse substrates to understand the biomechanics of selectins in an in vitro flow chamber, and use intravital microscopy to study selectin biomechanics in the context of the living organism. We propose to use molecular biology techniques to manipulate cDNA, cells, and mice to isolate each molecular mechanism. We will use the insights gained to design liposome-based targeted drug delivery systems and ultrasound contrast microbubbles for delivery in the vascular system under shear flow. At the end of the first year, we plan to have measurements of selectin off-rates, taking into account selectin shedding, and have tested selectin-containing liposomes for their ability to adhere under shear. Milestones for the following years are listed in the timeline.
这一应用促进了分子生物力学领域的跨学科生物工程研究。白细胞和内皮细胞黏附分子在炎症、免疫、癌症转移和其他过程中控制细胞的运输。一些黏附分子,其中包括选择素,是专门在有血流存在的情况下调节黏附的。压力驱动的血流与施加在血管壁上的剪切力有关,这会导致白细胞和其他细胞试图附着在内皮上的力。人们认为,剪切应力下的粘合要求粘合分子具有快速的缔合率(ON-rate),从而导致键的快速形成。体外实验和模拟研究表明,选择素也具有很高的键解离率(OFF-RATE)。初步数据表明,选择素的脱落率随选择素结合的细胞所受的剪切力(反应顺应性或拉伸强度)而有系统地变化。此外,至少一种选择素的释放被表面结合的或膜整合的金属蛋白酶的蛋白水解性切割所加速。目前的提案有四个具体目标。(1)测定L-、P-和E-选择素与其天然配体结合的键寿命和表观离散率。(2)探讨L-选择素脱落对白细胞黏附和选择素动力学的调节作用。(3)研究剪切流作用下选择素长度及其胞浆尾部对粘连生物力学的影响。(4)设计和制造利用白细胞黏附分子在剪应力作用下与血管壁结合的微珠、脂质体和充气气泡(超声造影剂)。这些目标中的每一个都是以三管齐下的方式实现的。我们建议使用激光捕获技术直接测量选择素键的生物力学和动力学参数,使用稀疏底物上的单个细胞来了解体外流动室中选择素的生物力学,并使用活体显微镜在活体的背景下研究选择素的生物力学。我们建议使用分子生物学技术来操纵cDNA、细胞和小鼠,以分离每个分子机制。我们将利用所获得的见解来设计基于脂质体的靶向给药系统和超声造影剂微泡,用于在切变流动下在血管系统中给药。在第一年结束时,我们计划测量选择素的脱落率,考虑到选择素的脱落,并测试了含有选择素的脂质体在剪切下的黏附能力。时间表中列出了今后几年的里程碑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Klaus F. Ley其他文献
Binding of function‐blocking mAbs to mouse and human P‐selectin glycoprotein ligand‐1 peptides with and without tyrosine sulfation
功能阻断单克隆抗体与小鼠和人 P-选择素糖蛋白配体 1 肽(有或没有酪氨酸硫酸化)的结合
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:5.5
- 作者:
Aravinda Thatte;S. Ficarro;K. Snapp;M. Wild;D. Vestweber;D. Hunt;Klaus F. Ley - 通讯作者:
Klaus F. Ley
Serum levels of soluble intercellular adhesion molecule-1 (sICAM-1) correlate with severity of ileitis in experimental Crohn's disease: A novel marker of small intestinal inflammation
- DOI:
10.1016/s0016-5085(00)85325-1 - 发表时间:
2000-04-01 - 期刊:
- 影响因子:
- 作者:
Jesus Rivera-Nieves;R. Cartland Burns;Christopher A. Moskaluk;Theresa T. Pizarro;Klaus F. Ley;Fabio Cominelli - 通讯作者:
Fabio Cominelli
α<sub>4</sub>β<sub>1</sub>integrin (VLA-4) blockade reduces neointimal growth after carotid air desiccation injury in the ApoE (−/−) mouse
- DOI:
10.1016/s0735-1097(02)80085-7 - 发表时间:
2002-03-06 - 期刊:
- 影响因子:
- 作者:
Kurt G. Barringhaus;J.William Phillips;John M. Sanders;Ann C. Czamik;Klaus F. Ley;Ian J. Sarembock - 通讯作者:
Ian J. Sarembock
Klaus F. Ley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Klaus F. Ley', 18)}}的其他基金
Mechanism of kindlin-3-dependent integrin activation
kindlin-3依赖性整合素激活机制
- 批准号:
10676897 - 财政年份:2020
- 资助金额:
$ 61.26万 - 项目类别:
Mechanism of kindlin-3-dependent integrin activation
kindlin-3依赖性整合素激活机制
- 批准号:
10229369 - 财政年份:2020
- 资助金额:
$ 61.26万 - 项目类别:
Vascular macrophages and T cells in atherosclerosis
动脉粥样硬化中的血管巨噬细胞和 T 细胞
- 批准号:
10112954 - 财政年份:2019
- 资助金额:
$ 61.26万 - 项目类别:
Vascular macrophages and T cells in atherosclerosis
动脉粥样硬化中的血管巨噬细胞和 T 细胞
- 批准号:
10369710 - 财政年份:2019
- 资助金额:
$ 61.26万 - 项目类别:
Vascular macrophages and T cells in atherosclerosis
动脉粥样硬化中的血管巨噬细胞和 T 细胞
- 批准号:
9895858 - 财政年份:2019
- 资助金额:
$ 61.26万 - 项目类别:
Vascular macrophages and T cells in atherosclerosis
动脉粥样硬化中的血管巨噬细胞和 T 细胞
- 批准号:
10623034 - 财政年份:2019
- 资助金额:
$ 61.26万 - 项目类别:
Vascular macrophages and T cells in atherosclerosis
动脉粥样硬化中的血管巨噬细胞和 T 细胞
- 批准号:
10565907 - 财政年份:2019
- 资助金额:
$ 61.26万 - 项目类别:
Core E: Cell sorting, CyTOF and RNA-Seq
核心 E:细胞分选、CyTOF 和 RNA-Seq
- 批准号:
10188604 - 财政年份:2017
- 资助金额:
$ 61.26万 - 项目类别:
Core B: Single Cell Protein and RNA Sequencing Core
核心 B:单细胞蛋白质和 RNA 测序核心
- 批准号:
10334092 - 财政年份:2017
- 资助金额:
$ 61.26万 - 项目类别:
相似海外基金
CAREER: Evolutionary biomechanics and functional morphology of salamander locomotion
职业:蝾螈运动的进化生物力学和功能形态
- 批准号:
2340080 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
Continuing Grant
Cruising the whale superhighway: The evolution, biomechanics, and ecological drivers of migration in cetaceans
巡航鲸鱼高速公路:鲸目动物迁徙的进化、生物力学和生态驱动因素
- 批准号:
NE/Y000757/1 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
Research Grant
2024 Summer Biomechanics, Bioengineering, and Biotransport Conference; Lake Geneva, Wisconsin; 11-14 June 2024
2024年夏季生物力学、生物工程和生物运输会议;
- 批准号:
2413182 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
Standard Grant
Predictive Biomechanics for Modelling Gait Stability and Falls Prediction
用于步态稳定性和跌倒预测建模的预测生物力学
- 批准号:
DP240101449 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
Discovery Projects
CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
- 批准号:
2338676 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track M: TANDEM: Tensegrity-based Assistive aND rehabilitation Exosuits to complement human bioMechanics
NSF 融合加速器,轨道 M:TANDEM:基于张拉整体的辅助和康复外装,以补充人体生物力学
- 批准号:
2344385 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: The three-dimensional biomechanics of the grasping big toe among higher primates
博士论文研究:高等灵长类抓握大脚趾的三维生物力学
- 批准号:
2341368 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
Standard Grant
Material testing machine for biomechanics
生物力学材料试验机
- 批准号:
520201861 - 财政年份:2023
- 资助金额:
$ 61.26万 - 项目类别:
Major Research Instrumentation
Stem cell/niche biomechanics in intestinal health and disease
肠道健康和疾病中的干细胞/利基生物力学
- 批准号:
2885708 - 财政年份:2023
- 资助金额:
$ 61.26万 - 项目类别:
Studentship
Determining the impact of lifestyle-related biomechanics on muscle in the ageing human arm
确定与生活方式相关的生物力学对衰老人类手臂肌肉的影响
- 批准号:
2899554 - 财政年份:2023
- 资助金额:
$ 61.26万 - 项目类别:
Studentship