Statistical Properties of Hyperbolic Groups and Dynamics
双曲群和动力学的统计性质
基本信息
- 批准号:1789203
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is at the interface of ergodic theory, a branch of mathematical analysis that studies dynamical systems and, more generally, group actions, from a probabilistic point of view, and the area of geometry that studies moduli spaces, i.e. spaces that parametrise geometric structures. An example of the latter is the so-called Teichmueller space that parametrises the hyperbolic metrics on a compact surface of fixed genus or, equivalently, representations of the fundamental group into a matrix group. The aim of the project is to further our understanding of the statistical properties of the discrete groups that arise as points in moduli spaces and more general groups of similar type -- a field which has grown up over the last few years, though building on the well developed ergodic theory of the chaotic dynamical systems, geodesic flows, which are associated to the geometry. For example, Calegari and Fujiwara showed that certain natural classes of observable satisfy a Central Limit Theorem, i.e. that they behave as if they were derived from a simple random system such as coin tossing. For the special case of compact surfaces, where the moduli space is the Teichmueller space, Pollicott and Sharp obtained more precise probabilistic results such as the Almost Sure Invariance Principle, which deals with the approximation of random variables by Brownian motion, and a local version of the Central Limit Theorem. An objective of the research is to extend these more precise results to a wider class of groups. The methodology would be based on an analysis of the spectral properties of families of so-called transfer operators that are part of the thermodynamic formalism associated to symbolic dynamical systems that encode information about the group actions. To date (September 2018), the student has (a) completed work on a central limit theorem for periodic orbits of hyperbolic (chaotic) flows and (b) succeeded in extending the results of Calegari-Fujiwara to a wider class of observables for general non-elementary hyperbolic groups . The work in (b) is close to being completed and the students has obtained both central limit results and large deviations results. There is scope for the student to pursue further investigation of more refined results such as local limit theorems or statistical invariance principles. The potential beneficiaries are researchers in ergodic theory, geometric group theory, hyperbolic geometry and chaotic dynamical systems. The research is in the research areas of Geometry and Topology and Mathematical Analysis, and is wholly within the Mathematical Sciences theme. .
该项目是在遍历理论的接口,数学分析的分支,研究动力系统,更一般地说,群体行动,从概率的角度来看,和几何领域,研究模空间,即参数化几何结构的空间。后者的一个例子是所谓的Teichmueller空间,它将固定亏格的紧致曲面上的双曲度量参数化,或者等价地,将基本群表示为矩阵群。该项目的目的是进一步了解离散群的统计特性,这些离散群作为模空间中的点和类似类型的更一般的群出现-这是一个在过去几年中发展起来的领域,尽管建立在混沌动力系统的遍历理论基础上,测地线流与几何学相关。例如,Calegari和Fujiwara证明了某些自然类的可观测满足中心极限定理,即它们的行为就像是从一个简单的随机系统(如抛硬币)中衍生出来的。对于紧致曲面的特殊情况,其中模空间是Teichmueller空间,Pollicott和Sharp获得了更精确的概率结果,例如几乎必然不变性原理,它处理布朗运动对随机变量的近似,以及中心极限定理的局部版本。研究的一个目的是将这些更精确的结果扩展到更广泛的群体。该方法将基于对所谓的转移算子家族的光谱特性的分析,这些转移算子是与编码关于群作用的信息的符号动力系统相关联的热力学形式主义的一部分。到目前为止(2018年9月),学生(a)完成了双曲(混沌)流周期轨道的中心极限定理的工作,(B)成功地将Calegari-Fujiwara的结果扩展到一般非初等双曲群的更广泛的一类观测量。(B)中的工作已接近完成,学生们已得到中心极限结果和大偏差结果。学生可以进一步研究更精细的结果,如局部极限定理或统计不变性原理。潜在的受益者是遍历理论、几何群论、双曲几何和混沌动力系统的研究人员。该研究是在几何和拓扑和数学分析的研究领域,并完全在数学科学的主题。.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Generalisations of hyperbolic groups and their properties
双曲群及其性质的推广
- 批准号:
2439634 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Statistical Properties of Hyperbolic Dynamical Systems and Applications to Statistical Physics
双曲动力系统的统计性质及其在统计物理中的应用
- 批准号:
1952876 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Statistical Properties of Hyperbolic Dynamical Systems and Applications to Statistical Physics
双曲动力系统的统计性质及其在统计物理中的应用
- 批准号:
1800811 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Distribution properties of hyperbolic and partially hyperbolic systems
双曲和部分双曲系统的分布特性
- 批准号:
1936868 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Studentship
Virtual properties of hyperbolic 3-manifolds
双曲3流形的虚性质
- 批准号:
1840696 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Virtual properties of hyperbolic 3-manifolds
双曲3流形的虚性质
- 批准号:
1510383 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Hyperbolic Properties of Families of Polarized Manifolds and Problems Related to Fake Compact Hermitian Symmetric Spaces
极化流形族的双曲性质及伪紧厄米对称空间相关问题
- 批准号:
1501282 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Relationship between the geometric properties of hyperbolic algebraic curves and the group-theoretic properties of the arithmetic fundamental groups of curves
双曲代数曲线的几何性质与算术基本曲线群的群论性质之间的关系
- 批准号:
24540016 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical Properties of Hyperbolic Systems with Singularities
具有奇点的双曲系统的统计性质
- 批准号:
0901448 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
On study of evolution equations with hyperbolic properties
具有双曲性质的演化方程的研究
- 批准号:
19340030 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)