Actions of Linear Groups

线性群的作用

基本信息

  • 批准号:
    1832533
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Let G be a permutation group on a finite set X. A subset B of X is said to be a base for G if its pointwise stabilizer in G is just the identity. Bases have been studied since the early years of permutation group theory, particularly in connection with orders of primitive groups and, more recently, with computational group theory. The latter connection has arisen because a group element is completely determined by its effect on a base - so the existence of a small base allows one to store group elements efficiently. There is a great deal of recent theory on bases of primitive permutation groups. Some of the focus has been on two major conjectures in the area: the Cameron-Kantor conjecture, which (roughly stated) says that a vast collection of types of primitive groups have bases of bounded size; and the Pyber conjecture, which relates the size of a minimal base of a primitive group to the order of the group in a remarkably close way. This proposal has more of the flavour of the former conjecture. Namely, for linear groups -- that is, subgroups of GL(n,q) for some dimension n and field GF(q), acting as a permutation group on the vectors of the underlying vector space V(n,q) -- we aim to determine the groups that have "small" bases; here, "small" initially will mean "size 2" (the smallest interesting size for a base), but will be extended to larger sizes as the project progresses. Clearly GL(n,q) itself does not have a small base unless n is small, but many of its subgroups do, and the aim is to classify these in as precise a way as possible. There is a substantial literature on this problem alone, but many new avenues to explore. An initial case will be to study the subgroups of GL(n,q) that are themselves simple groups of Lie type acting irreducibly on the underlying vector space V(n,q). Doing this will involve detailed use of the structure and representations of such simple groups, itself a very big subject.
设G是有限集合X上的一个置换群,如果它在G中的点向稳定子是恒等元,则称X的子集B是G的基。从置换群论的早期开始,特别是在与原始群的顺序和最近的计算群论的联系中,基就被研究了。后一种联系的出现是因为群元素完全取决于它对基的影响,所以小基的存在允许人们有效地存储群元素。近年来有大量关于原始置换群的理论。一些焦点集中在该领域的两个主要猜想上:Cameron-Kantor猜想,该猜想(粗略地说)认为大量类型的原始群具有有限大小的基;以及Pyber猜想,该猜想将原始群的最小基的大小与群的顺序非常密切地联系起来。这个建议更像前一个猜想。也就是说,对于线性群——即对于某些维数n和域GF(q)的GL(n,q)的子群,作为基础向量空间V(n,q)的向量上的置换群——我们的目标是确定具有“小”基的群;在这里,“小”最初是指“尺寸2”(基地的最小尺寸),但随着项目的进展,将扩展到更大的尺寸。显然,除非n很小,否则GL(n,q)本身的基数并不小,但它的许多子群都有,目的是尽可能精确地对这些子群进行分类。关于这个问题有大量的文献,但还有许多新的途径需要探索。一个初始的例子是研究GL(n,q)的子群,它们本身是作用于底层向量空间V(n,q)上不可约的Lie型单群。要做到这一点,需要详细使用这些简单群体的结构和表示,这本身就是一个非常大的主题。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bases for quasisimple linear groups
拟简单线性群的基
  • DOI:
    10.2140/ant.2018.12.1537
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Lee M
  • 通讯作者:
    Lee M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Arithmetic Questions in the Theory of Linear Algebraic Groups
线性代数群理论中的算术问题
  • 批准号:
    2154408
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
  • 批准号:
    RGPIN-2021-02603
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
MPS-Ascend: Representation Theory of General Linear Groups over Finite Local Principal Ideal Rings
MPS-Ascend:有限局部主理想环上的一般线性群表示论
  • 批准号:
    2213166
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
  • 批准号:
    RGPIN-2021-02603
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Groups, piecewise linear representations, and linear 2-representations
群、分段线性表示和线性 2-表示
  • 批准号:
    FT180100069
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Algorithms for generalized Arthur packets for general linear groups
一般线性群的广义阿瑟包算法
  • 批准号:
    540624-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Calculations of representation categories of quantum groups by linear skein theory and its applications to quantum topology
线性绞丝理论计算量子群表示范畴及其在量子拓扑中的应用
  • 批准号:
    19K14528
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Arithmetic of Homogeneous Spaces under Linear Algebraic Groups
线性代数群下齐次空间的算术
  • 批准号:
    1801951
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了