Simulating the Charge Transfer Process Along Molecular Wires

模拟沿分子线的电荷转移过程

基本信息

  • 批准号:
    1933081
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Molecular wires promise the ultimate miniaturisation of electronics by transporting electrons long distances along polymeric chains. The mechanism for this charge transfer (CT) seems to be a hopping-type behaviour, with the electrons moving between the monomer sites. One of the best molecular wires is DNA along which CT can occur for many nanometres, with a sequence dependent behaviour [1]. It is widely accepted that the CT along a polymer takes place via a site-hopping mechanism and simulations have been performed using models to investigate, for example the dependence of the transfer rate on the electronic structure of the system [2]. Thesesimulations, however, rarely include the quantum mechanical nature of the nuclei. This must be done when the coupling between electrons and nuclei dominate the dynamics, in what are termed non-adiabatic effects, leading to behaviour that cannot be modeled by classical mechanics. Such coupling is known to be important in a range of systems in which CT takes place, particularly after photo-excitation.The aim of this project is to use quantum dynamics simulations to study the mechanism of the CT in polymers and related systems, solving the time dependent Schrodinger equation (TDSE) as accurately as possible to include all quantum effects [3]. Of particular interest will be the importance of the coupling between the vibrational and electronic motion. Various models and methods will be examined, including using state-of-the-art direct dynamics simulations that calculate the potential energy surfaces on-the-fly as they are required [3]. This solves the TDSE using atomistic information and gives a complete chemical picture of the physical process. Molecular wires promise the ultimate miniaturisation of electronics by transporting electrons long distances along polymeric chains. The mechanism forthis charge transfer (CT) seems to be a hopping-type behaviour, with the electrons moving between the monomer sites. One of the best molecular wires is DNA along which CT can occur for many nanometres, with a sequence dependent behaviour [1]. It is widely accepted that the CT along a polymer takes place via a site-hopping mechanism and simulations have been performed using models to investigate, for example the dependence of the transfer rate on the electronic structure of the system [2]. These simulations, however, rarely include the quantum mechanical nature of the nuclei. This must be done when the coupling between electrons and nucleidominate the dynamics, in what are termed non-adiabatic effects, leading to behaviour that cannot be modeled by classical mechanics. Such coupling is known to be important in a range of systems in which CT takes place, particularly after photo-excitation. The aim of this project is to use quantum dynamics simulations to studythe mechanism of the CT in polymers and related systems, solving the time dependent Schrodinger equation (TDSE) as accurately as possible to includeall quantum effects [3]. Of particular interest will be the importance of the coupling between the vibrational and electronic motion. Various models andmethods will be examined, including using state-of-the-art direct dynamics simulations that calculate the potential energy surfaces on-the-fly as theyare required [3]. This solves the TDSE using atomistic information and gives a complete chemical picture of the physical process. 1. Wohlgamuth et al Anal. Chem. (2013) 85: 8634 2. Lambroupoulos et al Phys. Rev. E (2016) 94: 062403 3. Beck et al Phys. Rep. (2000) 324: 1 4. Richings et al Int. Rev. Phys. Chem. (2015) 34: 269
分子线通过沿着聚合链长距离传输电子,有望最终实现电子的小型化。这种电荷转移(CT)的机制似乎是跳跃型行为,电子在单体位置之间移动。最好的分子导线之一是DNA,CT可以沿着DNA发生许多纳米,具有顺序相关的行为[1]。人们普遍认为,沿着聚合物的CT是通过跳位机制进行的,并且已经使用模型进行了模拟,以研究例如转移速率对体系电子结构的依赖关系[2]。然而,这些模拟很少包括原子核的量子力学性质。当电子和原子核之间的耦合主导动力学时,必须做到这一点,这就是所谓的非绝热效应,导致无法用经典力学建模的行为。这个项目的目的是利用量子动力学模拟来研究聚合物及相关系统中CT的机制,尽可能精确地求解含时薛定谔方程(TDSE)以包含所有的量子效应[3]。特别令人感兴趣的是振动和电子运动之间的耦合的重要性。将研究各种模型和方法,包括使用最先进的直接动力学模拟,按需要即时计算势能面[3]。这使用原子信息解决了TDSE,并给出了物理过程的完整化学图像。分子线通过沿着聚合链长距离传输电子,有望最终实现电子的小型化。这种电荷转移(CT)的机制似乎是一种跳跃型行为,电子在单体位置之间移动。最好的分子导线之一是DNA,CT可以沿着DNA发生许多纳米,具有顺序相关的行为[1]。人们普遍认为,沿着聚合物的CT是通过跳位机制进行的,并且已经使用模型进行了模拟,以研究例如转移速率对体系电子结构的依赖关系[2]。然而,这些模拟很少包括原子核的量子力学性质。当电子和原子核之间的耦合导致动力学,即所谓的非绝热效应,导致经典力学无法模拟的行为时,必须做到这一点。众所周知,这种耦合在CT发生的一系列系统中是重要的,特别是在光激励之后。本项目的目的是利用量子动力学模拟来研究聚合物及相关体系中CT的机理,尽可能精确地求解含时薛定谔方程(TDSE)以包含所有量子效应[3]。特别令人感兴趣的是振动和电子运动之间的耦合的重要性。将研究各种模型和方法,包括使用最先进的直接动力学模拟,根据需要即时计算势能面[3]。这使用原子信息解决了TDSE,并给出了物理过程的完整化学图像。1.Wohlgamuth等人的肛门。化学。(2013)85:8634 2.Lambroupoulos等人。Rev.E(2016)94:062403 3.贝克等人.代表(2000)324:14.Richings et al Int.菲斯牧师。化学。(2015)34:269

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
Sema3E在CHARGE综合症中的作用及机制研究
  • 批准号:
    81160144
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAS: Proton-Coupled Electron Transfer Reactions from Ligand-to-Metal Charge Transfer Excited States.
CAS:配体到金属电荷转移激发态的质子耦合电子转移反应。
  • 批准号:
    2400727
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ERI: Unravel Charge Transfer Mechanisms in the Bulk and at Interphases and Interfaces of Ionogel Solid Electrolytes for High-Power-Density All-Solid-State Li Metal Batteries
ERI:揭示高功率密度全固态锂金属电池的离子凝胶固体电解质的本体以及相间和界面的电荷转移机制
  • 批准号:
    2347542
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Charge and Energy Transfer Processes at Inorganic-Organic Interfaces
无机-有机界面的电荷和能量转移过程
  • 批准号:
    DE230100382
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Investigation of Long-Range Charge Transfer and Excited State Processes in Biochemical Systems
生化系统中长程电荷转移和激发态过程的研究
  • 批准号:
    10713085
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
RUI: Promoting Through-Space Charge Transfer via Arylene Ethynylene Templates
RUI:通过亚芳基乙炔模板促进空间电荷转移
  • 批准号:
    2303822
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAS-SC: Uncovering Mechanistic Details of Photo-Induced Charge Transfer in Thin Films of Photoactive Materials with In situ and Operando Transient Absorption Spectroscopy
CAS-SC:利用原位和操作瞬态吸收光谱揭示光敏材料薄膜中光致电荷转移的机制细节
  • 批准号:
    2313290
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Supramolecular charge transfer emitters: increasing efficiency in the near-infrared
超分子电荷转移发射器:提高近红外效率
  • 批准号:
    EP/W037661/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Creation of Oxygen Evolution Catalysts Using Synergistic Charge Transfer Enhancement by Mixing Transition Metal Ions
通过混合过渡金属离子的协同电荷转移增强来制备析氧催化剂
  • 批准号:
    23H01738
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Deep Eutectic Electrochromic Ionic Liquids Formed by Charge-Transfer Interaction and Its Application to Display Devices
电荷转移相互作用形成的深共晶电致变色离子液体的研制及其在显示器件中的应用
  • 批准号:
    23H01937
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of charge transfer mechanism in battery materials by operando measurements using quantum beams
使用量子束进行操作测量研究电池材料中的电荷转移机制
  • 批准号:
    23H01693
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了