Maximising the capabilities of a jet classification algorithm on LHC track and vertex data
最大限度地发挥 LHC 轨迹和顶点数据上的喷气机分类算法的功能
基本信息
- 批准号:1966386
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Large Hadron collider (LHC) collides hydrogen nuclei 40 million times per second at the highest artificially available centre of mass energy. These collisions are recorded by large detectors like ATLAS with 100 million channels, creating Peta bytes of data every second. The ATLAS Inner Tracking Detector is by far the largest contributor to this channel count. The reconstruction of particle trajectories and the vertices where they intersect from the limited hit information of the Inner Detector is one of the greatest computational challenges of the LHC. Jets containing bottom hadrons (b-jets) have been a very important window into unexplored physics. The identification of b-jets is needed to observe the as of yet unmeasured largest decay channel of the Higgs boson into bottom-quark pairs. Heavy new TeV-scale resonances might couple preferably to third generation particles, like bottom quarks. Such resonances are of renewed interests as they can act as mediators between dark matter particles and normal matter. Restricting the parameter space of the mediators also provides constraints on models of dark matter particles. B-jets are identified through the decay properties of b-hadrons. The decay chain of b-hadrons always involves a weak decay. The resulting long lifetime has b-hadrons fly a distance of a few mm up to a few cm before they decay and leads to displaced secondary vertices. B-tagging uses the properties of reconstructed large impact parameter tracks and identified secondary and tertiary vertices to distinguish b-jets from jets originating from lighter quarks. An important criterium for the quality of b-tagging is the misidentification rate for non-b jets. When searching for a tiny signal in a large dataset dominated by background even a moderate mistag rate can be fatal. Machine learning and multivariate techniques such as neural nets and boosted decision trees are being used extensively in the identification of b-jets. An important aspect of such techniques is a careful preparation and selection of the input variables used. Reconstructing the underlying b-hadron decay topology provides an advantage . In the current ATLAS reconstruction this is done via the JetFitter algorithm, that tries to reconstruct a string of secondary and tertiary vertices along the jet direction. The project focuses on improving the b-jet identification especially under difficult conditions like large boost. This is done by investigating the known decay topologies and implementing broader options into JetFitter.
大型强子对撞机(LHC)以每秒4000万次的速度在最高的人工质量中心碰撞氢原子核。这些碰撞被ATLAS这样的大型探测器记录下来,它有1亿个通道,每秒产生1千万亿字节的数据。ATLAS内部跟踪探测器是迄今为止该通道数的最大贡献者。根据内部探测器的有限命中信息重建粒子轨迹及其相交的顶点是大型强子对撞机最大的计算挑战之一。含有底强子的喷流(b-jet)是探索未知物理学的一个非常重要的窗口。b-喷流的识别需要观察希格斯玻色子到底夸克对的最大衰变通道。重的新TeV尺度共振可能更适合耦合到第三代粒子,如底夸克。这种共振重新引起了人们的兴趣,因为它们可以充当暗物质粒子和正常物质之间的媒介。限制介质的参数空间也为暗物质粒子的模型提供了限制。b-喷注是通过b-强子的衰变性质来识别的。b强子的衰变链总是包含一个弱衰变。由此产生的长寿命使b-强子在衰变之前飞行几毫米到几厘米的距离,并导致次级顶点移位。b标记使用重建的大的影响参数轨道和确定的第二和第三顶点的属性,以区分b喷流从喷流起源于较轻的夸克。b标记质量的一个重要标准是对非b喷流的错误识别率。当在由背景主导的大型数据集中搜索微小信号时,即使是中等的错误率也可能是致命的。机器学习和多变量技术,如神经网络和提升决策树,正被广泛用于识别b-jet。这种技术的一个重要方面是仔细准备和选择所使用的输入变量。重建基本的b-强子衰变拓扑提供了一个优势。在当前的ATLAS重建中,这是通过JetFitter算法完成的,该算法试图沿着射流方向重建一串二级和三级顶点沿着。该项目的重点是改善b-jet识别,特别是在困难的条件下,如大助推。这是通过研究已知的衰减拓扑并在JetFitter中实现更广泛的选项来完成的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Impact of Dynamic Capabilities, Technological Readiness and Information Exchange Capabilities on the Resilience and Performance of Circular Supply Chains
动态能力、技术准备度和信息交换能力对循环供应链的弹性和绩效的影响
- 批准号:
24K05087 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Adding AI-powered analysis capabilities to Lifelancer platform
为 Lifelancer 平台添加人工智能分析功能
- 批准号:
10089687 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
RII Track-4: NSF: Enabling Synergistic Multi-Robot Cooperation for Mobile Manipulation Beyond Individual Robotic Capabilities
RII Track-4:NSF:实现协同多机器人合作,实现超越单个机器人能力的移动操作
- 批准号:
2327313 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
PharmaCrystNet: Improving the Predictive Capabilities of Crystallisation Models in Pharma
PharmaCrystNet:提高制药领域结晶模型的预测能力
- 批准号:
EP/Z533014/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Small Animal In Vivo Imaging Facility with microCT imaging capabilities
具有 microCT 成像功能的小动物体内成像设备
- 批准号:
LE240100032 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Transforming Cultural & Natural Resource Management workforce capabilities
转变文化
- 批准号:
LP210300151 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Linkage Projects
Collaborative Research: Increasing Capabilities of Heterogeneous Robot Teams through Mutually Beneficial Physical Interactions
协作研究:通过互利的物理交互提高异构机器人团队的能力
- 批准号:
2308653 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
MRI: Track 1 Acquisition of a High-Resolution Quadrupole Time-of-Flight Mass Spectrometer with Diverse Inlet and Ionization Capabilities for Chemical Analyses
MRI:轨道 1 采购具有多种入口和电离功能的高分辨率四极杆飞行时间质谱仪,用于化学分析
- 批准号:
2319939 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




