Translational Imaging of the Brain in the Twentieth Century: Patterns and Trends in EEG, CT, and MRI devices

二十世纪大脑的转化成像:脑电图、CT 和 MRI 设备的模式和趋势

基本信息

  • 批准号:
    2074102
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

There has been a move within the humanities and social sciences towards a 'neuro-criticism', to analyse and problematize the discourse and debates surrounding the neurosciences (Cooter 2014; Chodhury & Slaby, 2012). This 'neuro-criticism' avoids futurism, instead arguing that the neurosciences are a historically-situated enterprise contextualised in a web of cultural and political-economic forces (Chodhury & Slaby, 2012; Scott Vrecko, 2010). I build upon this discourse through a historical study of neuroscientific translational research in the 1900s.Objectives and Research Questions:Translational research is defined as the aim to develop basic research from which innovations of therapeutic and diagnostic benefit are derived (Brosnan & Michael, 2014). I follow current trends in neuro-criticism to ground translational research in a historical context. What are the historical conditions that have made the current culture of translational research possible? Have prior models of translational research had a tangible result? Is there a conceptual underpinning that runs through the various models of translational research?The context of 3 technologies that have been used to measure, define, and diagnose physiological and biological functions of the brain via graphical representation will be studied: Electroencephalographs (EEG), Computerised Tomography (CT), and Magnetic Resonance Imaging (MRI). This focus on neuroimaging allows for a model that shows the evolution of such technologies and the translational practices that were structured around them. Research Framework:Drawing on distinct and little studied archives will show how each technology was envisioned and used in basic research. Using these and the records of the Medical Research Council, I examine how basic research was translated into clinical policy.The papers of the Burden Neurological Institute will be the basis to explore EEG research in the 1940-60s (BURD, and the Isherwood papers for both CT Research in the 1970s and MRI research in the late 1970s-80s, for which the papers of Brian Worthington (PBW) and Peter Mansfield (PMP) will also be used.Literature Review:The lack of an appropriate model in contemporary neuroscientific discourse is noted by Borck (2012). Whereas prior models and metaphors of mind had defined and shaped neuroscientific activities, contemporary neuroimaging has become the 'medium and message' (Borck 2012, 129) of neuroscientific discourse. Neuro images are a self-supporting justification of themselves, making them difficult to critique. (Borck 2012; Cooter 2014). This allows for a mobility and interpretive flexibility that allows for conclusions regarding the neuro that often go beyond what EEG, CT, and MRI are capable of accurately measuring (Dumit 2004; Borck 2016). Defining a clearly outlined model of the neuroscientific brain will open a collaborative space.Methodology:Building on Hacking's ideas of "calibration/validation" (1995, pp. 98-99) provides a conceptual basis for the research planning. In this model, new technologies that measure or quantify a phenomenon, typically undergoes a process where they are checked against previously established judgements, measurements or experimental results. Viewing neuroscience through this lens helps to show what judgements neuroimaging has been calibrated against. In doing so, the categories of brain used in translational research can be more clearly outlined with solid boundaries. This can then be extended using Hacking's "classificatory looping"; a process by which new neuroscientists interact with the categories after they have become accepted (Chodhury & Slaby 2012, p. 8). As well as highlighting the legacy of working practices in areas of the neuroscience, such as translational research, the model of looping is a starting point from which to derive the current neuroscientific model from the accepted categories and methods of neuroscientific investigation.
在人文和社会科学中,有一种走向“神经批评”的趋势,分析和问题化围绕神经科学的话语和辩论(Cooter 2014; Chodhury & Slaby,2012)。这种“神经批评”避免了未来主义,而是认为神经科学是一个历史性的企业,在文化和政治经济力量的网络中背景化(Chodhury & Slaby,2012; Scott Vrecko,2010)。我通过对20世纪神经科学转化研究的历史研究建立了这一论述。目标和研究问题:转化研究被定义为发展基础研究的目的,从基础研究中获得治疗和诊断益处的创新(Brosnan & Michael,2014)。我遵循神经批评的当前趋势,在历史背景下进行翻译研究。是什么样的历史条件使当前的翻译研究文化成为可能?先前的翻译研究模式有切实的结果吗?翻译研究的各种模式是否有一个贯穿其中的概念基础?将研究通过图形表示测量,定义和诊断大脑生理和生物功能的3种技术的背景:脑电图(EEG),计算机断层扫描(CT)和磁共振成像(MRI)。这种对神经成像的关注允许一个模型,显示这些技术的演变和围绕它们构建的转化实践。研究框架:利用不同的和很少研究的档案,将展示每种技术是如何设想和用于基础研究的。利用这些文献和医学研究理事会的记录,我考察了基础研究是如何转化为临床政策的。伯顿神经学研究所的论文将成为探索20世纪40 - 60年代脑电图研究的基础(BURD,以及20世纪70年代CT研究和20世纪70年代末至80年代MRI研究的Isherwood论文,Brian Worthington(PBW)和Peter曼斯菲尔德(PMP)的论文也将被用于其中。文献综述:Borck(2012)指出,当代神经科学话语中缺乏适当的模型。鉴于先前的模型和思维隐喻已经定义和塑造了神经科学活动,当代神经成像已经成为神经科学话语的“媒介和信息”(Borck 2012,129)。神经图像是自我支持的自我辩护,使它们难以批判。(Borck 2012; Cooter 2014)。这允许移动性和解释的灵活性,允许关于神经元的结论通常超出EEG、CT和MRI能够准确测量的范围(Dumit 2004; Borck 2016)。定义一个清晰的神经科学大脑模型将打开一个合作的空间。方法论:建立在Hacking的“校准/验证”的思想上(1995,pp. 98-99)为研究规划提供了概念基础。在这个模型中,测量或量化一种现象的新技术通常会经历一个过程,在这个过程中,它们会根据先前建立的判断、测量或实验结果进行检查。通过这个透镜来观察神经科学有助于展示神经成像是根据什么判断来校准的。这样,翻译研究中使用的脑的类别可以更清楚地勾勒出坚实的边界。这可以通过Hacking的“分类循环”来扩展;这是一个新的神经科学家在类别被接受后与它们互动的过程(Chodhury & Slaby 2012,第8页)。除了强调神经科学领域的工作实践遗产,如转化研究,循环模型是从神经科学研究的公认类别和方法中导出当前神经科学模型的起点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

非小细胞肺癌Biomarker的Imaging MS研究新方法
  • 批准号:
    30672394
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum-Enabled Brain Imaging: A Pathway to Clinical Utility
量子脑成像:临床应用的途径
  • 批准号:
    10107115
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Small Business Research Initiative
Generation of the whole-brain atlas of the cuttlefish via tissue clearing and 3D imaging
通过组织透明化和 3D 成像生成乌贼的全脑图谱
  • 批准号:
    22KJ3076
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A large cross-disorder study of premorbid estimated intelligence and structural brain imaging in psychiatric disorders
精神疾病病前估计智力和结构脑成像的大型跨疾病研究
  • 批准号:
    23K07001
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
  • 批准号:
    2237309
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Cognitive and brain imaging correlates of apathy- components in asymptomatic middle aged individuals at high ADRD- risk
认知和脑成像与 ADRD 高风险无症状中年个体的冷漠成分相关
  • 批准号:
    10875019
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
  • 批准号:
    10717610
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Enhanced Deuterium Metabolic Imaging (DMI) of Metabolic Reprogramming in Brain Tumors
脑肿瘤代谢重编程的增强氘代谢成像 (DMI)
  • 批准号:
    10593853
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Elucidation of fear extinction mechanisms through in-vivo deep-brain optical imaging and manipulation focused on the activity dynamics in the prelimbic cortex
通过体内深部脑光学成像和操作阐明恐惧消退机制,重点关注前边缘皮层的活动动态
  • 批准号:
    22KJ0812
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Super-resolution Ultrasound Imaging for High-resolution Functional Mapping of the Brain
职业:用于大脑高分辨率功能绘图的超分辨率超声成像
  • 批准号:
    2237166
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Identifying genetics and brain imaging-based biomarkers of neuron-type specific vulnerability in late life
识别晚年神经元类型特定脆弱性的基于遗传学和脑成像的生物标志物
  • 批准号:
    490288
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了