Enhanced Deuterium Metabolic Imaging (DMI) of Metabolic Reprogramming in Brain Tumors
脑肿瘤代谢重编程的增强氘代谢成像 (DMI)
基本信息
- 批准号:10593853
- 负责人:
- 金额:$ 61.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnatomyBrainBrain NeoplasmsBrain scanCancer Cell GrowthCellsCentral Nervous SystemClinicalCoinConsumptionDataData SetDetectionDeuteriumDevelopmentDiagnosticEnergy MetabolismExhibitsGasesGlioblastomaGliomaGlucoseGlycolysisGoalsHalf-LifeHumanImageImaging DeviceImaging TechniquesInhalationJoint repairLabelLesionMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMeasurementMeasuresMetabolicMetabolic PathwayMetabolismMethodsNoiseNormal tissue morphologyOxidative PhosphorylationOxygen ConsumptionPatientsPerformancePhenotypePilot ProjectsPlayPositron-Emission TomographyProcessProductionProtocols documentationPyruvateRadioactiveReportingResolutionRoleScanningSignal TransductionSumSystemTechniquesTestingTherapeuticTissuesTrainingTumor MarkersWarburg Effectbrain tumor imagingclinical translationconvolutional neural networkdata acquisitionfluorodeoxyglucosefluorodeoxyglucose positron emission tomographyglucose metabolismglucose uptakeimage processingimaging approachimaging studyimprovedin vivoin vivo imaginginnovationmagnetic resonance spectroscopic imagingmetabolic imagingmultimodalitynon-invasive imagingnovelnovel therapeutic interventionnovel therapeuticsrapid growthreconstructionsignal processingsimulationtimelinetooltreatment responsetumortumor growthtumor metabolismvirtual
项目摘要
Abstract
Deuterium metabolic imaging (DMI) is an emerging MRI technique whereby deuterated substrates and
their metabolic products are imaged in vivo. A primary application is the study of energy metabolism, a
fundamental process for virtually all cells in the body. In particular, glucose (Glc) metabolism plays a critical
role in cancer, with two key metrics of tumor metabolism being total glucose consumption and the relative
fraction of Glc undergoing glycolysis (GLY) versus oxidative phosphorylation (OXPHOS). In contrast to normal
tissues, most cancers exhibit a preponderance of GLY over OXPHOS. Known as the Warburg effect or, more
generally metabolic reprogramming, these alterations are particularly pronounced in glioma and other brain
tumors. Elevated GLY in high-grade brain tumors has been shown to be a marker of tumor growth and
aggressiveness. From a therapeutic perspective, studies strongly support that this Warburg phenotype is
necessary and sufficient for the cancer process, which provides the framework of a highly novel therapeutic
strategy targeted at affecting these metabolic pathways. We contend that clinical translation is presently
impeded not so much by a lack of agents, but by the difficulty in measuring these fundamental aspects of
tumor metabolism in vivo.
Of the available imaging techniques, 18F-FDG-PET is well-established for imaging glucose uptake, whereas
robust in vivo measurements of GLY and OXPHOS are considerably more challenging. Triple 15O-PET can be
used to assess oxygen consumption (and hence OXPHOS) but is clinically problematic due to the 2-min half-
life of 15O and the challenges of coordinating multiple inhaled radioactive gases. MRI of hyperpolarized 13C-
labeled pyruvate has been shown capable of assessing tumor GLY/OXPHOS ratios; however, this technique is
very expensive with limited availability and unique challenges. More recently, the feasibility of using
conventional 2H MRSI of deuterated glucose to measure both GLY and OXPHOS has been successfully
demonstrated. Given the ubiquity of 3T scanners, we contend that 3T DMI would have maximal clinical impact,
and initial results for the human brain reported at 4T, in combination with our own 3T DMI data, indicate limited
spatial resolution, low SNR, and correspondingly long scan times are the primary limitations. This technical
development project will address these challenges by enhancing DMI via the incorporation of multimodal
information. Noting that 1H MRI and FDG-PET share significant mutual anatomic and metabolic information
with DMI, we propose to significantly enhance 3T DMI using signal processing and machine learning
approaches analogous to techniques using MRI to enhance FDG-PET resolution and SNR. The overall goal is
to demonstrate enhanced DMI acquisitions and image processing pipelines for maximal clinical impact, with
the initial application being the imaging of the Warburg effect in brain tumors.
摘要
氘代谢成像(DIM)是一种新兴的MRI技术,其中氘代底物和
它们的代谢产物在体内成像。一个主要的应用是研究能量代谢,
这是身体所有细胞的基本过程。特别地,葡萄糖(Glc)代谢在代谢中起关键作用。
在癌症中的作用,肿瘤代谢的两个关键指标是总葡萄糖消耗和相对葡萄糖消耗。
经历糖酵解(GLY)与氧化磷酸化(OXPHOS)的Glc部分。与正常相比,
在组织中,大多数癌症表现出GLY超过OXPHOS的优势。被称为“瓦尔堡效应”,
通常代谢重编程,这些改变在神经胶质瘤和其他脑组织中特别明显。
肿瘤的高级别脑肿瘤中升高的GLY已被证明是肿瘤生长的标志物,
侵略性从治疗的角度来看,研究强烈支持这种瓦尔堡表型是
这是癌症过程所必需和充分的,它提供了一种高度新颖的治疗方法的框架。
旨在影响这些代谢途径的策略。我们认为,临床翻译目前是
阻碍因素与其说是缺乏代理人,不如说是难以衡量这些基本方面
体内肿瘤代谢。
在可用的成像技术中,18F-FDG-PET被公认用于葡萄糖摄取成像,而
GLY和OXPHOS的体内稳健测量具有相当大的挑战性。三重15 O-PET可以是
用于评估耗氧量(因此OXPHOS),但由于2分钟半-
15 O的寿命和协调多种吸入放射性气体的挑战。超极化13 C-
标记的丙酮酸盐已经显示出能够评估肿瘤GLY/OXPHOS比率;然而,这种技术
非常昂贵,可用性有限,并且面临独特的挑战。最近,使用
用氘代葡萄糖的常规2 H MRSI测量GLY和OXPHOS已成功
演示。鉴于3 T扫描仪的普遍性,我们认为3 T扫描仪将具有最大的临床影响,
在4 T下报告的人类大脑的初步结果,结合我们自己的3 T数据,
空间分辨率、低SNR和相应的长扫描时间是主要的限制。本技术
一个发展项目将通过纳入多式联运来加强可持续发展,
信息.注意到1H MRI和FDG-PET共享重要的相互解剖和代谢信息
有了3 T,我们建议使用信号处理和机器学习来显著增强3 T的3 T能力。
方法类似于使用MRI的技术来增强FDG-PET分辨率和SNR。总的目标是
展示增强的DMI采集和图像处理管道,以实现最大的临床影响,
最初的应用是脑肿瘤中的瓦尔堡效应的成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel M Spielman其他文献
Daniel M Spielman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel M Spielman', 18)}}的其他基金
Robust 1H MRSI of GABA, Glutamate, Glutamine, and Glutathione
GABA、谷氨酸、谷氨酰胺和谷胱甘肽的稳定 1H MRSI
- 批准号:
9910230 - 财政年份:2017
- 资助金额:
$ 61.04万 - 项目类别:
Imaging Brain Metabolism Using MRS of Hyperpolarized 13C-Pyruvate
使用超极化 13C-丙酮酸 MRS 成像脑代谢
- 批准号:
9269573 - 财政年份:2015
- 资助金额:
$ 61.04万 - 项目类别:
Novel MRS methods for measuring brain energetics and neurotransmitter cycling
用于测量大脑能量学和神经递质循环的新 MRS 方法
- 批准号:
8990476 - 财政年份:2015
- 资助金额:
$ 61.04万 - 项目类别:
Hyperpolarizer for 13C MR Metabolic Imaging of Human Subjects and Animal Models
用于人类受试者和动物模型 13C MR 代谢成像的超极化器
- 批准号:
8333704 - 财政年份:2013
- 资助金额:
$ 61.04万 - 项目类别:
MEASUREMENT OF ETHANOL METABOLISM IN RAT LIVER USING MRS OF [1-13C]PYRUVATE
使用 [1-13C]丙酮酸 MRS 测量大鼠肝脏中的乙醇代谢
- 批准号:
8169890 - 财政年份:2010
- 资助金额:
$ 61.04万 - 项目类别:
Metabolic Imaging of the Cardioprotective Effects of Alcohol and ALDH2 Activators
酒精和 ALDH2 激活剂的心脏保护作用的代谢成像
- 批准号:
8401178 - 财政年份:2010
- 资助金额:
$ 61.04万 - 项目类别:
Metabolic Imaging of the Cardioprotective Effects of Alcohol and ALDH2 Activators
酒精和 ALDH2 激活剂的心脏保护作用的代谢成像
- 批准号:
7765749 - 财政年份:2010
- 资助金额:
$ 61.04万 - 项目类别:
Metabolic Imaging of the Cardioprotective Effects of Alcohol and ALDH2 Activators
酒精和 ALDH2 激活剂的心脏保护作用的代谢成像
- 批准号:
8206864 - 财政年份:2010
- 资助金额:
$ 61.04万 - 项目类别:
Metabolic Imaging of the Cardioprotective Effects of Alcohol and ALDH2 Activators
酒精和 ALDH2 激活剂的心脏保护作用的代谢成像
- 批准号:
8009887 - 财政年份:2010
- 资助金额:
$ 61.04万 - 项目类别:
MEASUREMENT OF ETHANOL METABOLISM IN RAT LIVER USING MRS OF [1-13C]PYRUVATE
使用 [1-13C]丙酮酸 MRS 测量大鼠肝脏中的乙醇代谢
- 批准号:
7955416 - 财政年份:2009
- 资助金额:
$ 61.04万 - 项目类别:
相似海外基金
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 61.04万 - 项目类别:
Standard Grant
Learning in the Human Brain: Anatomy, Physiology and Computation
人脑的学习:解剖学、生理学和计算
- 批准号:
2725902 - 财政年份:2022
- 资助金额:
$ 61.04万 - 项目类别:
Studentship
BRAIN Integrated Resource for Human Anatomy and Intracranial Neurophysiology
BRAIN 人体解剖学和颅内神经生理学综合资源
- 批准号:
10505412 - 财政年份:2022
- 资助金额:
$ 61.04万 - 项目类别:
CAREER: Evo-Developmental Interactions of Craniofacial and Brain Anatomy
职业:颅面和大脑解剖学的进化发育相互作用
- 批准号:
2045466 - 财政年份:2021
- 资助金额:
$ 61.04万 - 项目类别:
Continuing Grant
CAREER:Identifying Brain Anatomy and Function for Risky Behaviors in Large-Scale Imaging and Genetics Studies
职业:在大规模成像和遗传学研究中识别危险行为的大脑解剖结构和功能
- 批准号:
1942917 - 财政年份:2020
- 资助金额:
$ 61.04万 - 项目类别:
Continuing Grant
Gatekeeper – Bioprinting in vitro mini-models with recapitulating in vivo anatomy of the blood-brain barrier using remodelable elastin-like protein bioinks and neural progenitor cells
Gatekeeper â 使用可重塑弹性蛋白样蛋白质生物墨水和神经祖细胞来生物打印体外微型模型,重现血脑屏障的体内解剖结构
- 批准号:
425869082 - 财政年份:2019
- 资助金额:
$ 61.04万 - 项目类别:
Research Fellowships
Collaboratory for atlasing cell type anatomy in the female and male mouse brain
雌性和雄性小鼠大脑图谱细胞类型解剖学合作实验室
- 批准号:
9415873 - 财政年份:2017
- 资助金额:
$ 61.04万 - 项目类别:
The Development of Brain Anatomy and Connectivity in Males and Females with Autism Spectrum Disorder during Adolescence
患有自闭症谱系障碍的男性和女性青春期大脑解剖结构和连接性的发展
- 批准号:
271513085 - 财政年份:2015
- 资助金额:
$ 61.04万 - 项目类别:
Research Grants
Does anatomy explain behaviour in the developing mouse brain?
解剖学可以解释发育中的小鼠大脑的行为吗?
- 批准号:
466397-2014 - 财政年份:2014
- 资助金额:
$ 61.04万 - 项目类别:
University Undergraduate Student Research Awards
Anatomy-Driven Brain Connectivity Mapping
解剖驱动的大脑连接图谱
- 批准号:
EP/L023067/1 - 财政年份:2014
- 资助金额:
$ 61.04万 - 项目类别:
Research Grant