Effective field theories, soft theorems and ambitwistor strings
有效场论、软定理和双扭弦
基本信息
- 批准号:2099748
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research will be in the area of scattering amplitudes, (ambitwistor) string theory and conformal infinity. Scattering amplitudes form the S-matrix that describes the scattering of particles from the infinite past to the infinite future. Conformal infinity gives a method to understand the infinite past and future as initial and final data hypersurfaces giving a geometric insight into the construction of the S-matrix and its properties, including symmetries. In particular it has recently been shown by Strominger and collaborators that there is a clear relationship between these asymptotic symmetries and soft theorems for scattering amplitudes [1]. Recent work of the supervisor [2] shows that this has a particularly transparent and geometric representation in ambitwistor string theories. Furthermore, ambitwistor string theories have recently been extended to encompass effective field theories such as DBI, nonlinear sigma models, etc., that have particularly enhanced soft behaviour.Soft behaviour is particularly problematic in the construction of the S-matrix, and indeed many pure mathematicians will say that rigourously speaking the S-matrix for massless theories does not exist (or is trivial) and is subject to a number of no-go theorems. However, physicists have been computing the S-matrix for such theories for years using methods such as dimensional regularization to make sense of divergences that occur and have a detailed understanding of key structures such as the exponentiation of infrared divergences. These are essential for calculations of cross sections at CERN. Resolution of any of these issues would have a major potential impact both on the mathematics of these theories and on their physical applications.- Aims and objectives:The overarching aims are to understand underlying mathematical structures and to resolve key theoretical issues in the construction of the S-matrix centred around infrared problems including soft limits and the conformal representations of the S-matrix.I. To create a dictionary between the field theory based technology of Strominger et. al., and the ambitwistor string framework developed by the supervisor and collaborators.II. To compare the action of asymptotic symmetries in the two frameworks.III. To understand infrared sectors within the ambitwistor framework.IV. To gain an understanding of how physicist's approaches confront the issues of scattering between different infrared sectors.V. There will be novel effects in effective field theories with enhanced soft behaviour and so these will provide a testing ground.- Novelty of the research methodology:The use of ambitiwistor strings is unique to the group in Oxford and collaborators and provides powerful new techniques not widely used in the rest of the community ([3], [4]). Effective field theories should exhibit novel behaviours relative to more conventional theories.[1] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448.[2] Y. Geyer, A. E. Lipstein, and L. Mason, Ambitwistor strings at null infinity and subleading soft limits, Class. Quantum Gravity 32, 055003 (2014), arXiv:1406.1462.[3] L. Mason and D. Skinner, Heterotic twistor-string theory, Nucl. Phys. B795 (2008) 105, arXiv:0708.2276. [4] L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048, arXiv:1311.2564.This project falls within the EPSRC Mathematical Sciences research area, and in particular the sub-area of Mathematical Physics.No companies or collaborators will be involved.
研究方向为散射振幅、弦理论和共形无穷大。散射振幅形成s矩阵,描述粒子从无限过去到无限未来的散射。保形无穷提供了一种方法来理解无限的过去和未来作为初始和最终数据超曲面,从而对s矩阵的构造及其性质(包括对称性)进行几何洞察。特别是,Strominger和合作者最近表明,这些渐近对称性与散射振幅[1]的软定理之间存在明确的关系。导师[2]最近的工作表明,这在双弦理论中具有特别透明和几何的表示。此外,雄心弦理论最近被扩展到包括有效的场理论,如DBI,非线性sigma模型等,它们特别增强了软行为。软行为在s矩阵的构造中是特别有问题的,事实上,许多纯数学家会说,严格地说,无质量理论的s矩阵不存在(或者是微不足道的),并且服从于许多不存在的定理。然而,多年来,物理学家一直在为这些理论计算s矩阵,使用诸如维度正则化的方法来理解发生的发散,并对关键结构(如红外发散的指数)有详细的了解。这些对于欧洲核子研究中心的截面计算是必不可少的。这些问题中的任何一个的解决都将对这些理论的数学和物理应用产生重大的潜在影响。-目的和目标:总体目标是理解潜在的数学结构,并解决以红外问题为中心的s矩阵构建中的关键理论问题,包括软限制和s矩阵的保角表示。在Strominger等人基于场论的技术与导师和合作者开发的ambitwistor弦框架之间创建一个字典。比较两种框架下渐近对称的作用。了解红外扇区在雄心勃勃的框架。了解物理学家的方法如何面对不同红外波段之间的散射问题。在增强软行为的有效场论中会有新的效应,因此这些将提供一个试验场。-研究方法的新颖性:使用雄心弦是牛津大学和合作者的独特之处,并提供了在社区其他地方未广泛使用的强大新技术([3],[4])。有效的场论应该表现出相对于传统理论的新行为A.施特罗明格,重力红外结构与规范理论的讲座,物理学报,34 (4):173.05448 .[j]李志强,李志强,李志强,零无穷大下的Ambitwistor字符串和子超前软极限,第1类。引用本文:量子引力学报,2014,44 (5):146.1462L. Mason和D. Skinner,异质扭弦理论,核子。理论物理。生物医学工程学报(2008),35(4):888 - 888。[10]李建军,李建军,李建军,等。激光散射方程的研究进展,光子学报,2014,33(4):559 - 564。该项目属于EPSRC数学科学研究领域,特别是数学物理的子领域。没有公司或合作者参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于慧眼-HXMT宽能段观测的X射线吸积脉冲星磁场研究
- 批准号:12373051
- 批准年份:2023
- 资助金额:55.00 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于太赫兹光谱近场成像技术的应力场测量方法
- 批准号:11572217
- 批准年份:2015
- 资助金额:120.0 万元
- 项目类别:面上项目
新型Field-SEA多尺度溶剂模型的开发与应用研究
- 批准号:21506066
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
个性化近场头相关传输函数的测量与快速定制
- 批准号:11104082
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
通用声场空间信息捡拾与重放方法的研究
- 批准号:11174087
- 批准年份:2011
- 资助金额:70.0 万元
- 项目类别:面上项目
飞秒双色场下分子的三维无场准直动力学研究
- 批准号:11004078
- 批准年份:2010
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
- 批准号:50876120
- 批准年份:2008
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Maximising the new physics reach of the LHC through Effective Field Theories
通过有效场论最大化大型强子对撞机的新物理范围
- 批准号:
ST/X004155/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Higher-order corrections for effective field theories
有效场论的高阶修正
- 批准号:
2876651 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Electroweak Interactions and Fundamental Symmetries in Effective Field Theories
有效场论中的电弱相互作用和基本对称性
- 批准号:
2111426 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Effective Quantum Field Theories for the LHC
大型强子对撞机的有效量子场论
- 批准号:
2419739 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Effective Quantum Field Theories for the LHC
大型强子对撞机的有效量子场论
- 批准号:
2419842 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Dissipative Phenomena in Effective Field Theories
有效场论中的耗散现象
- 批准号:
1915611 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Constraints from high energy completion on low-energy effective field theories.
高能完成对低能有效场论的约束。
- 批准号:
2276644 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
Search for new physics via verification of Higgs interactions based on effective field theories
基于有效场论验证希格斯相互作用寻找新物理学
- 批准号:
18K03648 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
`Positivity Bounds in Effective Field Theories of Gravity'
“有效引力场论的积极界限”
- 批准号:
2119407 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Studentship