Machine Learning and Low Cost Ultrasonic Sensors for the Optimisation of Industrial Mixing Processes
用于优化工业混合过程的机器学习和低成本超声波传感器
基本信息
- 批准号:2104935
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The world is undergoing the fourth industrial revolution where digital technologies such as artificial intelligence, robotics, and the Internet of Things are used to improve the productivity, efficiency and sustainability of manufacturing processes. Industry 4.0 is underpinned by the acquisition and intelligent use of data. Therefore, sensors are a key technology for this manufacturing transformation. Mixing is one of the most common processes across manufacturing as it is not only used for combining materials, but also for suspending solids, increasing heat and mass transfer, providing aeration, and modifying material structure. Although several sensing techniques are available for monitoring mixing process, each have their own applications and limitations. Ultrasonic sensors are low-cost, real-time, in-line, able to be non-invasive, and capable of operating in opaque systems. There is little previous literature using ultrasonic sensors to monitor mixing. The industrially applicable, non-invasive, reflection-mode sensing technique employed in this research, along with the extensive data post-processing investigated, separates this work from the existing literature. The student will develop several model mixing systems in a laboratory setting and acquire sensor data during the mixing processes. Supervised Machine Learning (ML) trains by mapping input data to output values to then be able to predict output values from new input data. Classification ML models will be trained to predict whether the system is non-mixed or fully mixed. Regression ML models will be developed to predict the time remaining until mixing completion. Determination of whether a system is mixed or non-mixed would provide industrial processes benefits such as less off-specification product and less resource consumption caused by over-mixing. Prediction of the mixing time remaining would allow for better batch scheduling and therefore process productivity. The quality of the input data for ML models effects the prediction performance. Often, some specialist sensor or process knowledge is needed to engineer useful features from the data. Therefore, another aspect of this research is to use Convolution Neural Networks (CNN) which require no manual feature engineering from the sensor data. By using CNNs, the burden on operators deploying ultrasonic sensors in industrial processes can be reduced. Multi-sensor data fusion, combining outputs from multiple sensors to produce greater ML performance over that which could be achieved using a single sensor, will also be explored. Further research avenues of this work will focus on industrial application. For example, working with industrial partners to monitor their mixing processes. In addition, focus can be on overcoming the problem of limited output values available for training ML models in industrial settings. This is because a reference measurement for the mixture's state is often difficult, expensive, or time-consuming to obtain. Two methods for overcoming this difficulty are transfer learning and semi-supervised learning. Transfer learning involves training a ML model on a similar system where it is easier to obtain reference measurements, and then using the model to aid in prediction of the target system. Semi-supervised learning uses information from the sensor data with no output values available as well as those with output values provided.
世界正在经历第四次工业革命,人工智能、机器人和物联网等数字技术被用于提高制造过程的生产力、效率和可持续性。工业4.0的基础是数据的获取和智能使用。因此,传感器是这种制造业转型的关键技术。混合是整个制造过程中最常见的过程之一,因为它不仅用于组合材料,而且用于悬浮固体,增加热量和质量传递,提供通风和修改材料结构。虽然有几种传感技术可用于监测混合过程,但每种都有自己的应用和局限性。超声波传感器成本低,实时,在线,能够是非侵入性的,并且能够在不透明的系统中操作。以前很少有文献使用超声波传感器来监测混合。工业上适用的,非侵入性的,反射模式的传感技术在这项研究中,沿着广泛的数据后处理研究,从现有的文献中分离这项工作。学生将在实验室环境中开发几个模型混合系统,并在混合过程中获取传感器数据。监督机器学习(ML)通过将输入数据映射到输出值来进行训练,然后能够从新输入数据预测输出值。分类ML模型将被训练来预测系统是非混合还是完全混合。将开发回归ML模型,以预测混合完成前的剩余时间。确定系统是混合的还是非混合的将提供工业过程益处,诸如由过度混合引起的较少的不合规格的产品和较少的资源消耗。对剩余混合时间的预测将允许更好的分批调度,从而允许更好的工艺生产率。ML模型的输入数据质量影响预测性能。通常,需要一些专业的传感器或过程知识来从数据中设计有用的特征。因此,本研究的另一个方面是使用卷积神经网络(CNN),它不需要从传感器数据中进行手动特征工程。通过使用CNN,可以减轻在工业过程中部署超声波传感器的操作员的负担。还将探索多传感器数据融合,结合多个传感器的输出,以产生比使用单个传感器更好的ML性能。进一步的研究方向将集中在工业应用上。例如,与工业合作伙伴合作,监控他们的混合过程。此外,重点可以放在克服在工业环境中训练ML模型的输出值有限的问题上。这是因为混合物状态的参考测量通常是困难的、昂贵的或耗时的。克服这个困难的两种方法是迁移学习和半监督学习。迁移学习涉及在类似的系统上训练ML模型,在类似的系统上更容易获得参考测量值,然后使用该模型来帮助预测目标系统。半监督学习使用来自传感器数据的信息,这些传感器数据没有可用的输出值以及提供输出值的传感器数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Unifying Pre-training and Multilingual Semantic Representation Learning for Low-resource Neural Machine Translation
统一预训练和多语言语义表示学习以实现低资源神经机器翻译
- 批准号:
22KJ1843 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations with clinical and low-field brain MRI
独立于采集的机器学习,通过临床和低场脑 MRI 对代表性不足的老龄化人群进行形态计量分析
- 批准号:
10739049 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Machine learning assisted modelling and discovery of materials for low-carbon hydrogen production
机器学习辅助低碳制氢材料的建模和发现
- 批准号:
2868712 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
The development of Machine Learning methods to correct data responses from low-cost sensors to improve agricultural productivity and air quality data accuracy.
开发机器学习方法来纠正低成本传感器的数据响应,以提高农业生产力和空气质量数据的准确性。
- 批准号:
10081002 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
CRII: CNS: System for Deploying Ultra Low-Latency Machine Learning Applications on Programmable Networks
CRII:CNS:在可编程网络上部署超低延迟机器学习应用程序的系统
- 批准号:
2245352 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Machine-learning generated nucleases for accelerating the deployment of a novel, low-emission food production systems
机器学习生成核酸酶,用于加速新型低排放食品生产系统的部署
- 批准号:
10072768 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324369 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324368 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Machine learning to find new extraction solvents that has both excellent performance for separation and recovery of rare metals and low environmental impacts
机器学习寻找新的萃取溶剂,该溶剂既具有优异的稀有金属分离和回收性能,又对环境影响低
- 批准号:
23H01756 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of machine learning tools for the characterization and sorting of low level waste
开发用于低放废物表征和分类的机器学习工具
- 批准号:
571324-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants














{{item.name}}会员




