Femtosecond-micrometer spatiotemporal alignment of particle and laser beams

粒子束和激光束的飞秒微米时空对准

基本信息

  • 批准号:
    2123491
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Alastair Nutter will be developing a novel versatile method for spatiotemporal alignment and synchronization of particle and laser beams. The underlying principle was discovered as a key result of a multi-year experimental campaign obtained by the E210 collaboration at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory at Stanford, one of our strategic partners. The project will be done co-funded by our partner at Helmholtz-Institute Dresden-Rossendorf (HZDR) in Germany. HZDR did not only agree to co-fund this PhD project directly, but will also be providing substantial resources into the burgeoning collaboration in terms of using beamtime at their PW-class laser system to the tune of ~10 weeks per year, and may be additionally investing into significant SCAPA beamtime (daily fees for the 350 TW laser at SCAPA are £ 3300). The student will be based at Strathclyde, but will also be placed at HZDR for extended times, in line with the international aspect of the Strathclyde CDT on Plasma-based Particle and Light Sources http://ppals.phys.strath.ac.uk/ . The coordinated interaction of intense laser and electron beams plays an ever-increasing role, for example for various pump-probe experiments and imaging of the ultrafast and ultrasmall. This requires precise techniques to measure and control temporal and spatial overlap of the interaction. We have discovered a fundamental effect which permits plasma-photonic synchronization and alignment of intense laser and electron beams with femtosecond and micrometer precision in a single robust apparatus. A laser-generated cold plasma filament picks up the electric field of a transient electron beam to varying degree, seed plasma electrons are heated by this coupling and perform complex oscillations which extend into ambient gas. Here, their non-relativistic energies are just right to generate substantial amount of additional plasma via impact ionization. This acts as a 'magnifying glass', transforming the specific femtosecond-micrometer interaction signature into visible plasma recombination / de-excitation light, which is observable on microsecond-millimeter scales.We have already exploited this basic effect to demonstrate combined spatiotemporal synchronization and alignment of the SLAC Stanford 20 GeV electron beam with a focused Ti:Sapphire laser with femtosecond-micrometer accuracy. This approach enables advanced diagnostics which will improve a wide range of pump-probe experiments substantially, and allows to realise advanced spatiotemporally resolved experiments which are hitherto not feasible. The phenomena also shed light on the previously hidden importance of impact ionization for instance in advanced plasma accelerator experiments. Supporting particle-in-cell simulations reveal fascinating dynamics over a wide range of time and length scales: The initial fs-scale kick by the electron beam is spread along the thin seed filament by plasma density waves and corresponding GV/m scale fields on the ps-scale, and impact ionization and recombination processes then take place on the ns-us time scale.In Stanford, we have been using a basic version of this effect, using an electron beam generated in a conventional linear accelerator. Alastair's PhD work will develop this method of spatiotemporal alignment further, such that it will be available in advanced shape when FACET-II, the follow-up plasma wakefield accelerator facility in Stanford will come online in 2019 for user-assisted commissioning. However, the effect has even wider applicability and can be used to enable advanced plasma wakefield acceleration at laser-plasma accelerator facilities such as SCAPA or HZDR. For this, the electron beam is generated not by a conventional accelerator, but by a laser-plasma-accelerator.
阿拉斯泰尔·纳特将开发一种新颖的多功能方法,用于粒子束和激光束的时空对准和同步。其基本原理是我们的战略合作伙伴之一、斯坦福大学 SLAC 国家加速器实验室的高级加速器实验测试设施 (FACET) 与 E210 合作进行的多年实验活动的关键结果。该项目将由我们的合作伙伴德国德累斯顿-罗森多夫亥姆霍兹研究所 (HZDR) 共同资助。 HZDR 不仅同意直接共同资助该博士项目,还将为新兴合作提供大量资源,以在其 PW 级激光系统上使用每年约 10 周的光束时间,并可能额外投资于大量 SCAPA 光束时间(SCAPA 350 TW 激光器的每日费用为 3300 英镑)。学生将在斯特拉斯克莱德学习,但也将在 HZDR 停留较长时间,这与斯特拉斯克莱德等离子体粒子和光源 CDT 的国际化相一致 http://ppals.phys.strath.ac.uk/ 。强激光束和电子束的协调相互作用发挥着越来越重要的作用,例如在各种泵浦探测实验以及超快和超小型成像中。这需要精确的技术来测量和控制交互的时间和空间重叠。我们发现了一种基本效应,可以在单个坚固的设备中以飞秒和微米精度实现等离子体光子同步和强激光束和电子束的对准。激光产生的冷等离子体灯丝不同程度地接收瞬态电子束的电场,种子等离子体电子通过这种耦合被加热,并执行复杂的振荡,并延伸到周围气体中。在这里,它们的非相对论能量正好可以通过碰撞电离产生大量额外的等离子体。它起到“放大镜”的作用,将特定的飞秒-微米相互作用特征转化为可见的等离子体复合/去激发光,可以在微秒-毫米尺度上观察到。我们已经利用这种基本效应来演示 SLAC 斯坦福 20 GeV 电子束与聚焦钛宝石激光器的组合时空同步和对准 具有飞秒微米精度。这种方法实现了先进的诊断,这将大大改善各种泵浦探针实验,并允许实现迄今为止不可行的先进的时空分辨实验。这些现象还揭示了碰撞电离先前隐藏的重要性,例如在先进等离子体加速器实验中。支持细胞内粒子模拟揭示了在广泛的时间和长度尺度上令人着迷的动力学:电子束的初始 fs 尺度冲击通过等离子体密度波和 ps 尺度上相应的 GV/m 尺度场沿着细种子丝传播,然后碰撞电离和重组过程发生在 ns-us 时间尺度上。在斯坦福大学,我们一直在使用这种效应的基本版本,使用在 传统的直线加速器。阿拉斯泰尔的博士工作将进一步开发这种时空对准方法,以便当斯坦福大学的后续等离子体尾场加速器设施 FACET-II 于 2019 年上线以进行用户辅助调试时,该方法将以先进的形式提供。然而,该效应具有更广泛的适用性,可用于在 SCAPA 或 HZDR 等激光等离子体加速器设施中实现先进的等离子体尾场加速。为此,电子束不是由传统加速器产生,而是由激光等离子体加速器产生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Massively Parallel Optoacoustic Retinal Stimulation at Micrometer-Resolution
微米分辨率的大规模并行光声视网膜刺激
  • 批准号:
    10731795
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Toward sub-micrometer neutron transmission imaging with novel 8-terminal kinetic inductance detector
利用新型 8 端动感电感探测器实现亚微米中子透射成像
  • 批准号:
    23K13690
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Nanometer-to-micrometer Length Scale Mechanical and Tribological Characterization System
纳米到微米长度尺度的机械和摩擦学表征系统
  • 批准号:
    RTI-2023-00432
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Tools and Instruments
Linking optical characteristics of small particles (50 - 500 micrometer) with their sinking velocities in the mesopelagic environment
将小颗粒(50 - 500 微米)的光学特性与其在中层环境中的下沉速度联系起来
  • 批准号:
    2128438
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of a particle simulator for realistic clayey particles considering mechanical and electro-chemical forces - demystify microscopic mechanisms inside the 'house of cards' at micrometer scale
考虑机械力和电化学力的真实粘土粒子的粒子模拟器的开发 - 揭开微米尺度“纸牌屋”内部微观机制的神秘面纱
  • 批准号:
    21K04265
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Micrometer-sized photodetectors for selective-area transferring and integration on a heterogeneous substrate
微米级光电探测器,用于异质基板上的选择性区域转移和集成
  • 批准号:
    531859-2018
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Search for a violation of gravitational inverse square law at a micrometer scale
在微米尺度上寻找违反引力平方反比定律的现象
  • 批准号:
    21H01096
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Feeders and Laser Micrometer for Existing State-of-the-Art Twin-Screw Extruder
适用于现有最先进双螺杆挤出机的喂料器和激光测微计
  • 批准号:
    RTI-2022-00097
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Tools and Instruments
IIBR Instrumentation: Sub-micrometer Resolution Mass Spectrometry Imaging by Deep-UV Laser Ablation and Post-ionization
IIBR 仪器:通过深紫外激光烧蚀和后电离进行亚微米分辨率质谱成像
  • 批准号:
    1951447
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Micrometer-sized photodetectors for selective-area transferring and integration on a heterogeneous substrate
微米级光电探测器,用于异质基板上的选择性区域转移和集成
  • 批准号:
    531859-2018
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了