Improving cattle health by developing novel data fusion and machine learning approaches to Internet of things livestock data
通过开发物联网牲畜数据的新型数据融合和机器学习方法来改善牛的健康
基本信息
- 批准号:2182032
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The worldwide demand for meat and animal products is expected to increase by at least 40% in the next 15 years. In the last 20 years numbers of cows have decreased by approximately 25% and herd size has gradually increased from 89 to 170 (AHDB, 2014). The cost of endemic cattle diseases (BVD, mastitis, respiratory disease, Johne's ,Bovine tuberculosis etc.) is above £1Billion/year with UK sales of veterinary medicines for farmed animals are over £290M per annum (CHAWG, 2014). Most intervention to disease on farms is reactive rather than proactive (Ruston et al., 2015). Indicators such as raise in temp, change in activity or behaviour are early indicators of disease and can be measured with various senor technologies. An effective, automated precision monitoring solution would be of huge benefit for the early detection of disease in cattle, however, there are no algorithms for cattle health yet that have high predictive value. Key reasons are :a) There are diverse systems utilised such as wearable sensors (measuring body temperature, activity, pH, animal movement, locations), non-wearable sensors (measuring ambient temperature and humidity), automatic milking systems collecting production data, weighing platforms, measures within milk, as well as a raft of health, fertility and production data. The heterogeneity of data type, quantity and quality creates serious challenges for data aggregation and management, different data fusion methods need to be explored and developed and evaluatedb) multifactorial diseases, though one can monitored no of variables but there are complex and often correlated patterns, all need to be accounted for effective machine learning (ML) solution. Figure below shows pattern of temperature and activity of cows monitored and features high correlation between these)c) data representativeness; since most models are trained on only subset of data and in human telemetry domain there are several approaches ensembles, to gather the diversity of the seen data enabling ongoing learning and thus giving good and improved performance (Fischer et al., 2015). None yet been tried for animal health sensing dataThe above issues currently greatly limit the chances of achieving a performant ML-based health monitoring solution for the cattle. Methods: Proposes research will use existing available unique dataset of animal IoT data (see section 5) The data will include 10 farms and over 1000 animals. We will use various data fusion techniques to combine information from a multi-sensor data array to validate signals and create features (Dong and HE, 2007). We will then use signals pre-processing techniques such as FFT and others developed as part of our current project EL4L (el4l.com). We will then evaluate various machine learning algorithms and ensemble method (such as KNN, neural networks, Random forests etc.) utilizing Microsoft Azure Machine Learning Studio already utilized by the groups. Models will be validated on 'new' data. Key Questions are: 1. What methods are best for data fusion (signal level fusion, feature level fusion or decision level fusion for predicting cattle health (disease event, high somatic cell counts) and production (milk, weight gain) and what are penalties of those (with respect to performance, hardware implementation, software implementation)? Year 12. What features are important and have higher predictive value for early prediction of disease i.e single features, fused features ? How early can we predict health event on cattle farm? (related to 1) Year 23. Does using ensemble methods (using online and offline machine learning classifier) gives higher predictive value for this use case? (year 2-3) and validation study to test this on new data
全球对肉类和动物产品的需求预计将在未来15年内增长至少40%。在过去20年中,奶牛数量减少了约25%,牛群规模从89头逐渐增加到170头(AHDB,2014)。地方性牛病(BVD、乳腺炎、呼吸道疾病、约翰氏病、牛结核病等)的成本超过10亿英镑/年,英国用于养殖动物的兽药销售额每年超过2.9亿英镑(CHAWG,2014)。对农场疾病的大多数干预是反应性的而不是主动性的(Ruston等人,2015年)的报告。体温升高、活动或行为变化等指标是疾病的早期指标,可以用各种传感器技术进行测量。一个有效的、自动化的精确监测解决方案将对早期发现牛的疾病有巨大的好处,但是,目前还没有对牛的健康有很高预测价值的算法。主要原因是:a)使用的系统多种多样,如可穿戴传感器(测量体温、活动、pH值、动物运动、位置)、非可穿戴传感器(测量环境温度和湿度)、收集生产数据的自动挤奶系统、称重平台、牛奶中的测量以及大量健康、生育和生产数据。数据类型、数量和质量的异质性给数据聚合和管理带来了严峻的挑战,需要探索、开发和评估不同的数据融合方法; b)多因素疾病,尽管可以监测到任何变量,但存在复杂且往往相关的模式,所有这些都需要考虑到有效的机器学习(ML)解决方案。下图显示了监测的奶牛的温度和活动模式,并具有这些之间的高度相关性)c)数据代表性;由于大多数模型仅在数据子集上进行训练,并且在人类遥测领域中,有几种方法集合,以收集所看到的数据的多样性,从而实现持续学习,从而提供良好和改进的性能(Fischer等人,2015年)的报告。目前,上述问题极大地限制了为牛实现基于ML的高性能健康监测解决方案的机会。研究方法:建议研究将使用现有的动物物联网数据的唯一数据集(见第5节),该数据将包括10个农场和1000多只动物。我们将使用各种数据融合技术来联合收割机从多传感器数据阵列中组合信息,以验证信号并创建特征(Dong和HE,2007)。然后,我们将使用信号预处理技术,如FFT和其他作为我们当前项目EL 4L(el4l.com)的一部分开发的技术。然后,我们将评估各种机器学习算法和集成方法(如KNN,神经网络,随机森林等)。利用Microsoft Azure Machine Learning Studio,该工作室已被各小组使用。模型将根据“新”数据进行验证。关键问题是:1。哪些方法最适合数据融合(信号级融合、特征级融合或决策级融合),用于预测牛的健康(疾病事件、高体细胞计数)和生产(产奶、增重),以及这些方法的惩罚(在性能、硬件实现、软件实现方面)?12年级。哪些特征是重要的,对疾病的早期预测具有更高的预测价值,即单一特征,融合特征?我们能多早预测牛场的健康事件?(1)第23年。使用集成方法(使用在线和离线机器学习分类器)是否为该用例提供了更高的预测值?(year 2-3)和验证研究,以测试新数据
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
草地牛粪中大型节肢动物及其生态功能研究
- 批准号:30500355
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of distal aqueous humor outflow tissue in glucocorticoid-induced glaucoma
远端房水流出组织在糖皮质激素诱发青光眼中的作用
- 批准号:
10667863 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of an electrical impedance myography (EIM) vaginal device for the evaluation of pelvic skeletal muscles
开发用于评估盆腔骨骼肌的电阻抗肌动描记 (EIM) 阴道装置
- 批准号:
10822537 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Ex vivo whole ovary culture system for screening gonadotoxicity during drug development
用于在药物开发过程中筛选性腺毒性的离体全卵巢培养系统
- 批准号:
10823136 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
- 批准号:
10722368 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A New Cage Wash for Laboratory Animal Resources at Iowa State
爱荷华州实验动物资源的新笼式清洗
- 批准号:
10737441 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Mechanisms of accelerated calcification and structural degeneration of implantable biomaterials in pediatric cardiac surgery
小儿心脏手术中植入生物材料加速钙化和结构退化的机制
- 批准号:
10655959 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Defining bioactivities of peptides released from human milk proteins in the preterm infant intestine
定义早产儿肠道中母乳蛋白释放的肽的生物活性
- 批准号:
10658669 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Mitigation of ventilation-based resuspension and spread of airborne viruses in nosocomial and healthcare settings
减轻医院和医疗机构中基于通气的空气传播病毒的再悬浮和传播
- 批准号:
10668064 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Digital Platform For Sustainable Health: A Step Change In Reducing Endemic Disease In Dairy Cattle
可持续健康数字平台:减少奶牛地方病的一步改变
- 批准号:
BB/X017435/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant