Artificial Intelligence Methods For Electricity Market Imbalance Prediction
电力市场失衡预测的人工智能方法
基本信息
- 批准号:2262951
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The core objective of the PhD is to identify drivers of UK electrical imbalance, create forecasting tools to better anticipate them, and then form a probabilistic price forecasting model for the balancing market.Novel artificial intelligence methods, specifically Bayesian deep learning, will be employed for the forecast model development. The forecasts will be carried out across varying spatial and temporal horizons to identify the optimum forecast resolution which provides the most value to system operators. This will require the use of multiple existing and new datasets sourced from across the UK and Europe.The proposed PhD topic involved the development of Artificial Intelligence approaches that can make use of diverse and disparate data relevant to electricity markets such as weather forecasts, renewable generation production, historical demand and many other factors to develop month, week and day ahead forecasts of the imbalance volume/price in the market per half hourly period. The research will also involve estimating the level of uncertainty around these predictions and developing an understanding of electricity market structure and interpreting findings to promote better market design. In your PhD you will be expected to develop expertise in Artificial intelligence methods from reinforcement learning and neural networks to Bayesian deep learning. The project is highly interdisciplinary one requiring an understanding of power systems, market design and advanced artificial intelligence methods and the ideal candidate is expected to be comfortable and interested in working with colleagues across these domains.
该博士的核心目标是识别英国电力不平衡的驱动因素,创建预测工具以更好地预测它们,然后为平衡市场形成概率价格预测模型。新的人工智能方法,特别是贝叶斯深度学习,将用于预测模型的开发。这些预报将在不同的空间和时间范围内进行,以确定最佳的预报分辨率,为系统运营商提供最大的价值。这将需要使用来自英国和欧洲的多个现有和新的数据集。拟议的博士学位主题涉及人工智能方法的开发,该方法可以利用与电力市场相关的各种不同的数据,如天气预报,可再生能源发电生产,历史需求和许多其他因素来开发月,每半小时周期的市场不平衡量/价格的周前和日前预测。研究还将涉及估计这些预测的不确定性水平,并对电力市场结构进行理解,并解释研究结果,以促进更好的市场设计。在你的博士学位,你将有望开发从强化学习和神经网络到贝叶斯深度学习的人工智能方法的专业知识。该项目是一个高度跨学科的项目,需要了解电力系统,市场设计和先进的人工智能方法,理想的候选人应该是舒适的,并有兴趣与这些领域的同事合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Accelerated Design of New Sustainable Battery Materials with Artificial Intelligence Methods
利用人工智能方法加速设计新型可持续电池材料
- 批准号:
2885868 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Leveraging artificial intelligence methods and electronic health records for pediatric pharmacovigilance
利用人工智能方法和电子健康记录进行儿科药物警戒
- 批准号:
10750074 - 财政年份:2023
- 资助金额:
-- - 项目类别:
SCALE:Industry empowerment to multiphase fluid dynamics simulations using Artificial Intelligence & statistical methods on modern hardware architectur
规模:使用人工智能进行多相流体动力学模拟的行业授权
- 批准号:
EP/Y034686/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
A comprehensive evaluation of the effectiveness and robustness of statistical methods and artificial intelligence in control applications
全面评估统计方法和人工智能在控制应用中的有效性和鲁棒性
- 批准号:
2891603 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Workshop/Collaborative Research: The Frontiers of Artificial Intelligence-Empowered Methods and Solutions to Urban Transportation Challenges
研讨会/合作研究:人工智能赋能的方法和城市交通挑战解决方案的前沿
- 批准号:
2203497 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
A mixed-methods study of the nature, extent and consequences of artificial intelligence (AI) for individualized treatment planning in end-of-life and palliative care (EOLPC)
对人工智能 (AI) 在临终关怀和姑息治疗 (EOLPC) 中个性化治疗计划的性质、程度和后果的混合方法研究
- 批准号:
10367249 - 财政年份:2022
- 资助金额:
-- - 项目类别:
STEM-AI: Scientific Theory Encoding Methods for Artificial Intelligence
STEM-AI:人工智能的科学理论编码方法
- 批准号:
567554-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Safer lung cancer radiotherapy delivery using novel artificial intelligence methods
使用新颖的人工智能方法更安全地进行肺癌放射治疗
- 批准号:
10366916 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A mixed-methods study of the nature, extent and consequences of artificial intelligence (AI) for individualized treatment planning in end-of-life and palliative care (EOLPC)
对人工智能 (AI) 在临终关怀和姑息治疗 (EOLPC) 中个性化治疗计划的性质、程度和后果的混合方法研究
- 批准号:
10591562 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Data-Driven Computational Methods Utilizing Artificial Intelligence to Optimize Phenotype in Human Induced Pluripotent Stem Cell Bioprocessing
利用人工智能优化人类诱导多能干细胞生物加工表型的数据驱动计算方法
- 批准号:
546785-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral