Integrated Control of Vascular Pattern Formation
血管模式形成的综合控制
基本信息
- 批准号:6655666
- 负责人:
- 金额:$ 71.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-09-01 至 2006-08-31
- 项目状态:已结题
- 来源:
- 关键词:alpha actinin angiogenesis arterioles bioengineering /biomedical engineering cell differentiation cell migration cell proliferation cell type computer simulation developmental genetics embryo /fetus fibroblasts gene targeting growth factor receptors immunocytochemistry laboratory mouse mammalian embryology mathematical model microcirculation platelet derived growth factor receptor expression tissue /cell culture transforming growth factors vascular smooth muscle
项目摘要
This Bioengineering Research Partnership assembles a team led by two biomedical engineers and a molecular physiologist to focus on the integrative control of vascular pattern formation. While vascular assembly and pattern formation will be needed as critical elements of successful therapeutic collateralization of progressively ischemic organs and in tissue engineering of various tissue substitutes in the future, remarkably little is known of the cells involved, the array of signal molecules and their genetic regulation, and the biophysical factors regulating the spatial and temporal dynamics of vascular pattern formation. Key questions now are: what is the origin of cells responsible for the investment of arterioles with contractile cells and what are the signals that control their proliferation, migration, and differentiation? An integrative systems approach is proposed to measure the dynamics of arteriolar pattern formation in vivo across time scales from the embryo to the adult, and spanning spatial scales from genes to cells to whole networks, and to create a new generation of computational approaches to understand the complex interplay of multiple interacting cells and signal molecules. The specific aims are 1) to determine the role of PDGF and TGF-beta in arteriolar pattern formation during embryonic development, 2) to determine the cell types involved, role of PDGF and TGF-beta signaling, and spatial and temporal patterns of arteriolar assembly in adults, and 3) to develop and use a new cell-based computer simulation to perform integrative spatio-temporal analysis of the arterialization process in the embryo and adult, including multi-signal control of fibroblast and smooth muscle cell proliferation, migration, and differentiation. The multidisciplinary team will utilize unique gene-targeted mice in conjunction with innovative in vivo measurements, and integration of the data into the new computational models will improve understanding of the gene circuitry regulating arteriolar pattern formation. This focused partnership with three investigators who have worked together previously brings a unique set of complementary tools to bear on the problem. Year 1 milestones are to obtain the first microvessel mappings of contractile cell recruitment in transgenic mouse embryonic tissues, to implement spatial guidance of arteriolar pattern formation through application of focal growth factors in adult window chambers, and to implement a novel computational model of arterialization that represents smooth muscle cells and fibroblasts discretely. The long term goal is to define the mechanisms that control arteriolar pattern formation, and to provide the basis for powerful therapeutic vascularization procedures that function in the native environment in vivo.
该生物工程研究伙伴关系由两名生物医学工程师和一名分子生理学家领导的团队组成,专注于血管模式形成的综合控制。 虽然血管组装和模式的形成将需要作为成功的治疗性抵押渐进缺血器官和在组织工程的各种组织替代品在未来的关键要素,显着鲜为人知的是,涉及的细胞,信号分子的阵列和它们的遗传调控,以及生物物理因素调节的空间和时间动态的血管模式的形成。 现在的关键问题是:负责小动脉内收缩细胞的细胞来源是什么?控制它们增殖、迁移和分化的信号是什么?提出了一种综合系统方法来测量从胚胎到成人的时间尺度上的体内小动脉模式形成的动态,并跨越从基因到细胞到整个网络的空间尺度,并创建新一代的计算方法来理解多个相互作用的细胞和信号分子的复杂相互作用。 具体目的是1)确定PDGF和TGF-β在胚胎发育期间小动脉模式形成中的作用,2)确定所涉及的细胞类型、PDGF和TGF-β信号传导的作用以及成人中小动脉组装的空间和时间模式,3)开发和使用新的基于细胞的计算机模拟来执行集成空间-胚胎和成人动脉化过程的时间分析,包括成纤维细胞和平滑肌细胞增殖、迁移和分化的多信号控制。 多学科团队将利用独特的基因靶向小鼠结合创新的体内测量,并将数据整合到新的计算模型中,将提高对调节小动脉模式形成的基因电路的理解。 与三名以前曾一起工作的调查人员的这种有重点的伙伴关系带来了一套独特的互补工具来解决这个问题。 第一年的里程碑是获得第一个微血管映射的收缩细胞招聘在转基因小鼠胚胎组织中,通过应用局部生长因子在成人窗口室实现小动脉模式形成的空间指导,并实现一种新的计算模型的动脉化,代表平滑肌细胞和成纤维细胞离散。 长期目标是确定控制小动脉模式形成的机制,并为在体内天然环境中发挥作用的强大治疗性血管形成程序提供基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS C SKALAK其他文献
THOMAS C SKALAK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THOMAS C SKALAK', 18)}}的其他基金
Static Magnetic Fields and Microvascular Adaptation
静磁场和微血管适应
- 批准号:
6512105 - 财政年份:2000
- 资助金额:
$ 71.56万 - 项目类别:
Static Magnetic Fields and Microvascular Adaptation
静磁场和微血管适应
- 批准号:
6323965 - 财政年份:2000
- 资助金额:
$ 71.56万 - 项目类别:
Static Magnetic Fields and Microvascular Adaptation
静磁场和微血管适应
- 批准号:
6375442 - 财政年份:2000
- 资助金额:
$ 71.56万 - 项目类别:
Static Magnetic Fields and Microvascular Adaptation
静磁场和微血管适应
- 批准号:
6743666 - 财政年份:2000
- 资助金额:
$ 71.56万 - 项目类别:
Static Magnetic Fields and Microvascular Adaptation
静磁场和微血管适应
- 批准号:
6632729 - 财政年份:2000
- 资助金额:
$ 71.56万 - 项目类别:
ARTERIOLAR ADAPTATION TO HEMODYNAMIC STRESSES IN VIVO
小动脉对体内血流动力学压力的适应
- 批准号:
2702247 - 财政年份:1996
- 资助金额:
$ 71.56万 - 项目类别:
相似国自然基金
ROBO4对视网膜血管生成(angiogenesis)的调控及其分子机制
- 批准号:81200692
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Igniting Life with Sparks of Light: 3D Spatiotemporal Photoactivation of Angiogenesis via Radiational Kinesis (3D SPARK)
用光的火花点燃生命:通过辐射运动进行血管生成的 3D 时空光激活 (3D SPARK)
- 批准号:
MR/X034976/1 - 财政年份:2024
- 资助金额:
$ 71.56万 - 项目类别:
Fellowship
The impact of Hyaluronic Acid on growth factor signalling and angiogenesis
透明质酸对生长因子信号传导和血管生成的影响
- 批准号:
DP240101674 - 财政年份:2024
- 资助金额:
$ 71.56万 - 项目类别:
Discovery Projects
Interrogating the Potential of Ccn1+ Astrocyte Niches to Drive Angiogenesis after Spinal Cord Injury
探讨 Ccn1 星形胶质细胞生态位在脊髓损伤后驱动血管生成的潜力
- 批准号:
10607960 - 财政年份:2023
- 资助金额:
$ 71.56万 - 项目类别:
Temporospatial Single-Cell Characterization of Angiogenesis and Myocardial Regeneration in Small and Large Mammals
小型和大型哺乳动物血管生成和心肌再生的时空单细胞表征
- 批准号:
10751870 - 财政年份:2023
- 资助金额:
$ 71.56万 - 项目类别:
Endothelial von Willebrand factor and the tissue-specific regulation of angiogenesis and vascular integrity
内皮血管性血友病因子和血管生成和血管完整性的组织特异性调节
- 批准号:
MR/X021106/1 - 财政年份:2023
- 资助金额:
$ 71.56万 - 项目类别:
Research Grant
Angiogenesis process in wound healing and vascular grafting and the role of pericytes.
血管生成过程在伤口愈合和血管移植中以及周细胞的作用。
- 批准号:
23K15172 - 财政年份:2023
- 资助金额:
$ 71.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular mechanisms underlying heme transport at the blood-brain barrier and its role in angiogenesis
血红素在血脑屏障转运的分子机制及其在血管生成中的作用
- 批准号:
10572752 - 财政年份:2023
- 资助金额:
$ 71.56万 - 项目类别:
Astrocyte-specific molecular cues guiding retinal angiogenesis
星形胶质细胞特异性分子线索指导视网膜血管生成
- 批准号:
10676468 - 财政年份:2023
- 资助金额:
$ 71.56万 - 项目类别:
Network models of differentiation landscapes for angiogenesis and hematopoiesis
血管生成和造血分化景观的网络模型
- 批准号:
10622797 - 财政年份:2023
- 资助金额:
$ 71.56万 - 项目类别:
PAI-1 promotes angiogenesis in cutaneous angiosarcoma
PAI-1促进皮肤血管肉瘤的血管生成
- 批准号:
23K15260 - 财政年份:2023
- 资助金额:
$ 71.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




