Analysis of nonlinear conservation laws of mixed type and related equations.
混合型非线性守恒定律及相关方程的分析。
基本信息
- 批准号:2271824
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Conservation laws are systems of nonlinear partial differential equations (PDEs) in divergence form. Simply these equations assert that the time rate of change in the amount of a quantity contained within a region is equal to the rate of flux of this quantity through the boundary of that region. The nonlinearity present within these systems often leads to the formation of jump discontinuities in the solution, known as shocks. Examples of shocks are found naturally in high-speed fluid flows, such as the flow past supersonic or near-sonic aircraft where the resultant shock may be heard as a ``sonic boom''. These flows are typically governed by the Euler equations for compressible fluids, or variations thereof, and therefore the mathematical analysis of these equations can facilitate improvements in the design of aircraft, or more generally advancements in aerodynamics.The mathematical theory of conservation laws in one spatial dimension is well documented, but surprisingly little progress has been made with the theory in higher dimensions (with two and three dimensions being most relevant for aerodynamics), and many longstanding open problems remain. One such open problem is the transonic shock problem. When a shock hits an obstacle (such as an aircraft, or more simply a wedge or cone), shock reflection-diffraction occurs, and in certain situations this can produce regions of supersonic and subsonic flow respectively separated by the shock. The transonic shock problem is then to solve the equations governing this flow, and may be formulated as a free boundary problem involving nonlinear PDEs of mixed hyperbolic-elliptic type. In the 2018 book of Chen and Feldman The Mathematics of Shock Reflection-Diffraction and von Neumann's Conjectures, the authors express that ``the understanding of these transonic problems requires a complete mathematical solution of the corresponding free boundary problems for nonlinear mixed PDEs'', and that ``these problems are fundamental in the mathematical theory of multidimensional conservation laws''. The book provides an account of recent developments in the analysis of shock reflection-diffraction, and in particular contains a complete solution to the shock reflection-diffraction problem in two dimensions. This research aims to further develop these new ideas, and make progress in the area of free boundary problems of mixed type.This project falls within the EPSRC Mathematical Analysis research area. The research will be carried out under the supervision of Prof. Gui-Qiang Chen, and is not currently planned to involve any industrial partners.
守恒律是散度形式的非线性偏微分方程组。简单地说,这些方程断言,一个区域内包含的一个量的量的时间变化率等于这个量通过该区域边界的流量速率。这些系统中存在的非线性经常导致解中跳跃不连续的形成,称为冲击。在高速流体流动中自然会发现激波的例子,例如流过超音速或近音速飞机时,所产生的激波可能被听到为“音速爆轰”。这些流动通常由可压缩流体的欧拉方程或其变体所控制,因此,对这些方程的数学分析可以促进飞机设计的改进,或者更广泛地促进空气动力学的进步。一维空间守恒定律的数学理论得到了很好的证明,但令人惊讶的是,该理论在更高维(二维和三维与空气动力学最相关)方面进展甚微,许多长期悬而未决的问题仍然存在。其中一个悬而未决的问题就是跨音速冲击问题。当激波击中障碍物(如飞机,或者更简单地说是楔形或锥体)时,激波反射-绕射就会发生,在某些情况下,这会产生分别被激波隔开的超音速和亚音速流动区域。跨音速激波问题就是求解控制这种流动的方程,并且可以表示为一个含有混合双曲-椭圆型非线性偏微分方程组的自由边界问题。在Chen和Feldman在2018年出版的《激波反射-绕射的数学和冯·诺依曼猜想》一书中,作者表示“要理解这些跨音速问题,需要非线性混合偏微分方程组相应的自由边界问题的完整数学解”,并且“这些问题是多维守恒律数学理论的基础”。这本书提供了激波反射-绕射分析的最新进展,特别是包含了激波反射-绕射问题在两个维度的完整解决方案。本研究旨在进一步发展这些新思想,并在混合型自由边界问题领域取得进展。本项目属于EPSRC数学分析研究领域。这项研究将在陈桂强教授的监督下进行,目前没有计划让任何行业合作伙伴参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
低杂波加热的全波解TORIC数值模拟以及动理论GeFi粒子模拟
- 批准号:11105178
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
非线性发展方程及其吸引子
- 批准号:10871040
- 批准年份:2008
- 资助金额:27.0 万元
- 项目类别:面上项目
大型机械结构非线性特性的实验辨识和物理仿真
- 批准号:50405043
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
半导体中激子的量子非线性光学的研究
- 批准号:10474025
- 批准年份:2004
- 资助金额:25.0 万元
- 项目类别:面上项目
经济复杂系统的非稳态时间序列分析及非线性演化动力学理论
- 批准号:70471078
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
- 批准号:
2306258 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Electricity Pricing and Subsidy for Energy Conservation in Developing Country: Evidence from Natural Experiment
发展中国家节能电价和补贴:来自自然实验的证据
- 批准号:
20K13498 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Tailored Entropy Stable Discretizations of Nonlinear Conservation Laws
职业:非线性守恒定律的定制熵稳定离散化
- 批准号:
1943186 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Theory and Solution Methods for Generalized Nash Equilibrium Problems Governed by Networks of Nonlinear Hyperbolic Conservation Laws
非线性双曲守恒律网络治理的广义纳什均衡问题的理论与求解方法
- 批准号:
423771718 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Priority Programmes
Nonlinear Partial Differential Equations in Conservation Laws and Applications
守恒定律中的非线性偏微分方程及其应用
- 批准号:
1907519 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Systems of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程组
- 批准号:
1715012 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Efficient hp-adaptive algorithms for the discontinuous Galerkin method for nonlinear hyperbolic conservation laws on graphics processing units (GPU)
用于图形处理单元 (GPU) 上非线性双曲守恒定律的不连续伽辽金方法的高效 HP 自适应算法
- 批准号:
475025-2015 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Efficient hp-adaptive algorithms for the discontinuous Galerkin method for nonlinear hyperbolic conservation laws on graphics processing units (GPU)
用于图形处理单元 (GPU) 上非线性双曲守恒定律的不连续伽辽金方法的高效 HP 自适应算法
- 批准号:
475025-2015 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Efficient hp-adaptive algorithms for the discontinuous Galerkin method for nonlinear hyperbolic conservation laws on graphics processing units (GPU)
用于图形处理单元 (GPU) 上非线性双曲守恒定律的不连续伽辽金方法的高效 HP 自适应算法
- 批准号:
475025-2015 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Structure of solutions to the systems of nonlinear hyperbolic partial differential equations arising in fluid dynamics and conservation laws for phase transition dynamics
流体动力学中出现的非线性双曲偏微分方程组的解的结构和相变动力学守恒定律
- 批准号:
23540250 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)