Nonlinear Partial Differential Equations in Conservation Laws and Applications

守恒定律中的非线性偏微分方程及其应用

基本信息

  • 批准号:
    1907519
  • 负责人:
  • 金额:
    $ 29.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

This research project is devoted to developing new mathematical methods and techniques for studying some nonlinear partial differential equations governing the fluid flow and related applications. Their study is crucial for understanding the dynamics of many applications critical for STEM including gas dynamics, engineering, materials science, geometry, fluid turbulence, shell theory, active systems in biology/biophysics, stochastic dynamics, and so on. While the one-dimensional problems are rather well understood, the general theory for the multi-dimensional case is mathematically underdeveloped. The research project will advance knowledge of the fundamental areas of mathematics and mechanics as well as applications; it will also provide opportunities for students, including those from underrepresented groups and women, to receive training in these important areas through participation in the active research in applied mathematics. The goal of the project is to investigate some nonlinear partial differential equations arising from multi-dimensional conservation laws and related applications. The research program focuses on the following topics:(1) the existence and stability of transonic contact discontinuity in gas dynamics: this is a free boundary and mixed-type problem, and this study will provide new methods and shed light on the general multi-dimensional theory of conservation laws;(2) the global smooth solutions to the Gauss-Codazzi equations of isometric immersion of surfaces: a global smooth solution to the Gauss-Codazzi equations yields a smooth isometric immersion of surfaces, and it is challenging to find such a global smooth solution for general surfaces;(3) the weak and strong solutions to the stochastic compressible Navier-Stokes equations with various types of noise: the stochastic problems for the compressible flows are underdeveloped and widely open, and many fundamental problems are difficult; and(4) global solutions to the system of active hydrodynamics in biology: active systems arise in many practical applications in biology/biophysics, and its modeling and analysis are challenging due to its complexity, while fundamental mathematical problems are widely open.The purpose of this research is to develop novel analytic methods and efficient techniques for solving some important problems in multi-dimensional inviscid and viscous compressible flows and applications, and to gain insights into the general multi-dimensional problems of conservation laws and emerging real-world applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究计画致力于发展新的数学方法与技术,以研究流体流动的非线性偏微分方程及其相关应用。他们的研究对于理解STEM的许多关键应用的动力学至关重要,包括气体动力学、工程学、材料科学、几何学、流体湍流、壳理论、生物学/生物物理学中的主动系统、随机动力学等。虽然一维问题已经相当好地理解,但多维情况的一般理论在数学上还不发达。该研究项目将促进对数学和力学以及应用的基本领域的了解;它还将为学生,包括来自代表性不足群体的学生和妇女提供机会,通过参与应用数学的积极研究,接受这些重要领域的培训。该项目的目标是研究一些非线性偏微分方程所产生的多维守恒律和相关的应用。该研究计划主要集中在以下几个方面:(1)跨音速接触间断的存在性和稳定性:这是一个自由边界和混合型问题,这项研究将提供新的方法,并阐明一般多维守恒律理论;(2)等距浸入表面的Gauss-Codazzi方程的整体光滑解:Gauss-Codazzi方程的整体光滑解产生曲面的光滑等距浸入,并且对于一般曲面找到这样的整体光滑解是具有挑战性的;(3)带各种噪声的随机可压缩Navier-Stokes方程的弱解和强解:可压缩流动的随机问题是不成熟的和广泛开放的,并且许多基本问题是困难的;(4)生物学中主动流体动力学系统的整体解:主动系统出现在生物学/生物物理学的许多实际应用中,并且由于其复杂性,其建模和分析是具有挑战性的,而基础数学问题是广泛开放的,本研究的目的是发展新的分析方法和有效的技术,以解决一些重要的问题,在多个,三维无粘和粘性可压缩流动和应用,并深入了解一般的多维问题的守恒定律和新兴的真实的-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Linear stability of compressible vortex sheets in 2D elastodynamics: variable coefficients
  • DOI:
    10.1007/s00208-018-01798-w
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    R. Chen;Jilong Hu;Dehua Wang
  • 通讯作者:
    R. Chen;Jilong Hu;Dehua Wang
Incompressible limit for compressible viscoelastic flows with large velocity
  • DOI:
    10.1515/anona-2022-0324
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Xianpeng Hu;Yaobin Ou;Dehua Wang;Lu Yang
  • 通讯作者:
    Xianpeng Hu;Yaobin Ou;Dehua Wang;Lu Yang
Global Regularity of the Three-Dimensional Fractional Micropolar Equations
三维分数阶微极方程的整体正则性
Global well-posedness and optimal large-time behavior of strong solutions to the non-isentropic particle-fluid flows
非等熵粒子流体流强解的全局适定性和最优大时间行为
  • DOI:
    10.1007/s00526-020-01776-8
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanmin Mu;Dehua Wang
  • 通讯作者:
    Dehua Wang
On the Vortex Sheets of Compressible Flows
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dehua Wang其他文献

Interference in the Photodetachment of a Negative Ion near Two Perpendicular Elastic Surfaces
两个垂直弹性表面附近负离子光脱离的干涉
  • DOI:
    10.6122/cjp.20140901c
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Dehua Wang
  • 通讯作者:
    Dehua Wang
Ab initio investigation of the first-order liquid-liquid phase transition in molten sulfur
熔融硫中一级液-液相变的从头算研究
  • DOI:
    10.1103/physrevb.109.014209
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ziqing Yang;Jiaxin Xu;Gang Zhao;Dehua Wang
  • 通讯作者:
    Dehua Wang
Simulation of the gravitational wave frequency distribution of neutron star–black hole mergers
中子星—黑洞并合引力波频率分布模拟
  • DOI:
    10.1088/1674-1056/abff28
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianwei Zhang;Chengmin Zhang;Di Li;Xianghan Cui;Wuming Yang;Dehua Wang;Yiyan Yang;Shaolan Bi;Xianfei Zhang
  • 通讯作者:
    Xianfei Zhang
Influence of the oscillating electric field on the photodetachment of H− ion in a static electric field
静电场中振荡电场对H-离子光脱离的影响
Study of the escape of particle from an open quarter-circular microcavity
开放式四分之一圆微腔中粒子逃逸的研究

Dehua Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dehua Wang', 18)}}的其他基金

DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219384
  • 财政年份:
    2022
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Standard Grant
Hyperbolic Conservation Laws and Applications
双曲守恒定律及其应用
  • 批准号:
    1613213
  • 财政年份:
    2016
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Standard Grant
Free Boundary Problems and Applications, Spring 2014
免费边界问题和应用,2014 年春季
  • 批准号:
    1445629
  • 财政年份:
    2015
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Conservation Laws and Applications
守恒定律中的偏微分方程及其应用
  • 批准号:
    1312800
  • 财政年份:
    2013
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Continuing Grant
Analysis of Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的分析及相关应用
  • 批准号:
    0906160
  • 财政年份:
    2009
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Standard Grant
Analysis and Applications of Nonlinear Partial Differential Equations in Conservation Laws
守恒定律中非线性偏微分方程的分析与应用
  • 批准号:
    0604362
  • 财政年份:
    2006
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
  • 批准号:
    0244487
  • 财政年份:
    2003
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
  • 批准号:
    41664001
  • 批准年份:
    2016
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
  • 批准号:
    61402377
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
  • 批准号:
    11261019
  • 批准年份:
    2012
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
  • 批准号:
    2246031
  • 财政年份:
    2023
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
  • 批准号:
    23K03165
  • 财政年份:
    2023
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
  • 批准号:
    2247027
  • 财政年份:
    2023
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
  • 批准号:
    2307097
  • 财政年份:
    2023
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2318032
  • 财政年份:
    2023
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
  • 批准号:
    23K03167
  • 财政年份:
    2023
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear partial differential equations in heterogeneous frameworks
异构框架中的非线性偏微分方程
  • 批准号:
    RGPIN-2017-04313
  • 财政年份:
    2022
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Discovery Grants Program - Individual
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2206675
  • 财政年份:
    2022
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了